首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A lambda gt11 library of Mycoplasma genitalium genomic DNA was generated, and clones were identified using a pool of monoclonal antibodies directed against different epitopes of the 140 kDa adhesin protein. Because the 140 kDa protein of M. genitalium and the 170 kDa P1 adhesin of M. pneumoniae share biological properties such as a tip-associated location, cytadherence function and immunologic crossreactivity, we performed Southern blot analysis using these cloned partial 140 kDa gene fragments and 14 subclones that span the P1 structural gene of M. pneumoniae. Homologous regions of the two genes were identified.  相似文献   

2.
Previous serological data have demonstrated cross-reactive antigens between two pathogenic species of mycoplasmas, M. pneumoniae and M. genitalium. Preliminary analysis of sera and monoclonal antibodies (MAbs) to protein antigens of these species showed an immunodominance of adhesin P1 (165 kilodaltons [kDa]) of M. pneumoniae in mice and hamsters and a 140-kDa protein of M. genitalium in mice and experimentally infected chimpanzees. To further characterize these two proteins, we assayed multiple anti-P1 and anti-140-kDa protein MAbs by enzyme-linked immunosorbent assay, immunoblot, and radioimmunoprecipitation techniques. The 140-kDa M. genitalium protein was shown to be surface accessible and insensitive to levels of trypsin which readily degrade protein P1. Peptide mapping was used to identify a unique class of MAbs which bound a cross-reactive molecule common to both the major adhesin protein P1 of M. pneumoniae and the 140-kDa protein of M. genitalium. MAbs generated against both M. pneumoniae and M. genitalium which were reactive with this determinant blocked M. pneumoniae attachment to chicken erythrocytes.  相似文献   

3.
A new strategy for rapidly selecting and testing genetic vaccines has been developed, in which a whole genome library is cloned into a bacteriophage lambda ZAP Express vector which contains both prokaryotic (P(lac)) and eukaryotic (P(CMV)) promoters upstream of the insertion site. The phage library is plated on Escherichia coli cells, immunoblotted, and probed with hyperimmune and/or convalescent-phase antiserum to rapidly identify vaccine candidates. These are then plaque purified and grown as liquid lysates, and whole bacteriophage particles are then used directly to immunize the host, following which P(CMV)-driven expression of the candidate vaccine gene occurs. In the example given here, a semirandom genome library of the bovine pathogen Mycoplasma mycoides subsp. mycoides small colony (SC) biotype was cloned into lambda ZAP Express, and two strongly immunodominant clones, lambda-A8 and lambda-B1, were identified and subsequently tested for vaccine potential against M. mycoides subsp. mycoides SC biotype-induced mycoplasmemia. Sequencing and immunoblotting indicated that clone lambda-A8 expressed an isopropyl-beta-d-thiogalactopyranoside (IPTG)-inducible M. mycoides subsp. mycoides SC biotype protein with a 28-kDa apparent molecular mass, identified as a previously uncharacterized putative lipoprotein (MSC_0397). Clone lambda-B1 contained several full-length genes from the M. mycoides subsp. mycoides SC biotype pyruvate dehydrogenase region, and two IPTG-independent polypeptides, of 29 kDa and 57 kDa, were identified on immunoblots. Following vaccination, significant anti-M. mycoides subsp. mycoides SC biotype responses were observed in mice vaccinated with clones lambda-A8 and lambda-B1. A significant stimulation index was observed following incubation of splenocytes from mice vaccinated with clone lambda-A8 with whole live M. mycoides subsp. mycoides SC biotype cells, indicating cellular proliferation. After challenge, mice vaccinated with clone lambda-A8 also exhibited a reduced level of mycoplasmemia compared to controls, suggesting that the MSC_0397 lipoprotein has a protective effect in the mouse model when delivered as a bacteriophage DNA vaccine. Bacteriophage-mediated immunoscreening using an appropriate vector system offers a rapid and simple technique for the identification and immediate testing of putative candidate vaccines from a variety of pathogens.  相似文献   

4.
Monoclonal antibodies directed against Mycoplasma pneumoniae surface components were examined for their ability to block mycoplasma attachment to chicken erythrocytes. Purified preparations of antibodies which recognize the major mycoplasma ligand mediating cytadherence (protein P1, 165 kilodaltons) inhibited attachment by more than 85% of the control values. Monoclonal antibodies reactive with two other surface proteins of 110 and 32 kilodaltons also blocked attachment. Surprisingly, monoclonal antibodies specific for M. pneumoniae lipids (J. Morrison-Plummer, D. H. Jones, and J. B. Baseman, J. Immunol. Methods 64:165-178, 1983) enhanced mycoplasma-erythrocyte binding. All antibodies examined had no effect on thymidine incorporation by M. pneumoniae.  相似文献   

5.
Five different clones (SA1B05, SA1B10, SA2F01, SA8A11 and SA9H10) were isolated from the gene library of the Lactococcus garvieae SA8201 (KG-) strain by immunological screening using rabbit serum against L. garvieae (KG-) phenotype cells. A Western blot analysis indicated that the molecular sizes of immunologically detected proteins of SA1B05, SA1B10, SA2F01, SA8A11 and SA9H10, which were fused with LacZ protein, were 25, 30, 28, 26 and 13 kDa, respectively. The amino acid sequences of the immunologically detected proteins of SA1B05, SA1B10, SA2F01 and SA8A11 were homologous to a processing protease of Bacillus subtilis (36.6%), dihydropteroate synthase of Escherichia coli (34.6%), trigger factor of B. subtilis (45.8%) and N-acetylglucosamine-6-phosphate deacetylase of Vibrio furnissii (37.1%), respectively. There was no significant homologous sequence of SA9H10 in DDBJ/EMBL/GenBank and SwissProt. We cloned and sequenced a longer DNA fragment (SA9H10L) of SA9H10 from the gene library. The predicted amino acid sequence of this clone was weak homology to M protein of Streptococcus pyogenes (22.7%). Five genes were specifically expressed in the KG- phenotype strains. However, SA8A11 and SA9H10 was expressed in the mutated strain SA8201-TTC, whose serological phenotype was changed from KG- to KG+ by 2,3,5-triphenyltetrazolium chloride.  相似文献   

6.
A genomic library of Streptococcus pyogenes CS24 DNA was constructed by cloning streptococcal DNA partially digested with Sau3A into the lambda replacement vector EMBL3. The expression of streptococcal C5a peptidase (SCP) was analyzed by radioimmunoassay with hyperimmune rabbit serum. Two clones, lambda 4.1 and lambda 4.2, were found to express the desired antigen, and various DNA fragments from the hybrid bacteriophage lambda 4.1 were subcloned into the plasmid vector pUC9 in Escherichia coli. One of the recombinant plasmids, designated pTT1, contained a 5.8-kilobase (kb) streptococcal DNA insert. Analysis of total cellular protein from this E. coli clone by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western (immuno-) blotting identified a 140,000-Mr protein, similar in size to the native protein purified from S. pyogenes. Cloned SCP was functionally active, as shown by its ability to inhibit C5a-mediated chemotaxis. By deletion analysis with both restriction endonucleases and BAL 31 nuclease, the SCP gene was localized to a 4.3-kb segment of DNA. Southern hybridization experiments showed that the type 12 M protein-coding sequence is also present in the hybrid phage lambda 4.1, at approximately 2 kb upstream of the SCP structural gene. Western blot analysis indicated that the cloned streptococcal DNA in lambda 4.1 directed the expression of both SCP and M12 protein.  相似文献   

7.
Filamentous structures designated Triton shells were obtained from virulent Mycoplasma pneumoniae by treatment with Triton X-100. Monoclonal antibodies directed against M. pneumoniae were used in conjunction with radioimmunoprecipitation and Western blotting to detect immunologically reactive polypeptides in Triton shells. The major adhesin, protein P1, was associated with these structures.  相似文献   

8.
Mycoplasma pneumoniae organisms possessing a hemadsorbing-negative (HA-) phenotype comprise more than 50% of the population of virulent M. pneumoniae cultures. Monoclonal antibody to P1, the major adhesin of M. pneumoniae reacts with this HA- mycoplasma fraction based upon radioimmunoprecipitation and immunoblotting. Demonstration of P1 in the entire mycoplasma population suggests that topological organization of this adhesin in the membrane or the physiological state of the mycoplasmas may determine hemadsorbing capabilities.  相似文献   

9.
Serum from naturally infected cattle was used to identify a novel Mycobacterium bovis antigen from an expression library. The first recombinant product identified was a fusion protein with lacZ (55 kDa). A clone containing the whole gene was also obtained. This clone expressed a 38-kDa protein. A rabbit serum against the recombinant antigen reacts in M. bovis supernatants with two proteins of 36 and 34 kDa. The new protein was called P36/P34. The gene cloned has a deduced amino acid sequence with a predicted molecular mass of 28 kDa, showing a characteristic signal sequence for exportation. The protein bears partial homology to a 28-kDa protein from M. leprae. An interesting feature of the P36/P34 sequence is that it contains several PGLTS repeats, which are not present in the M. leprae protein. Antigenic determinants seem also to be conserved between the two proteins because sera from leprosy patients recognized the recombinant M. bovis protein. The discrepancy among the molecular mass deduced from the sequence (28 kDa), that of the recombinant protein in Escherichia coli (38 kDa), and that of the native protein in M. bovis (36 and 34 kDa) could be attributed to posttranslational modifications or to the high proline content that may alter the migration properties of the protein. This antigen seems to be immunodominant during bovine tuberculosis, because 8 of 9 serum specimens from diseased cattle are reactive. The homology among the M. leprae 28-kDa protein, the protein described in this article, and a recently described M. tuberculosis protein suggests the existence of a new protein family in mycobacteria.  相似文献   

10.
Mycoplasma pneumoniae is the causative agent of primary atypical pneumonia in humans. Adherence of M. pneumoniae to host cells requires several adhesin proteins, such as P1, P30, and P116. A major limitation in developing a specific diagnostic test for M. pneumoniae is the inability to express adhesin proteins in heterologous expression systems due to unusual usage of the UGA stop codon, leading to premature termination of these proteins in Escherichia coli. In the present study, we successfully expressed the C-terminal (P1-C1) and N-terminal (P1-N1) regions of the P1 protein in E. coli. On screening these recombinant proteins with sera from M. pneumoniae-infected patients, only the P1-C1 protein was found to be immunogenic. This protein can be used as an antigen for immunodiagnosis of M. pneumoniae infection, as well as in adherence inhibition studies to understand the pathophysiology of the disease.  相似文献   

11.
Escherichia coli 469-3 (O21:H-) was isolated from a child with severe enteritis. Ultrastructural analysis of the surface of the strain indicated the presence of very fine fimbriae which mediated mannose-resistant hemagglutination of human blood and caused the bacteria to adhere to human epithelial cell lines and to brush borders of isolated human colonic, but not duodenal, enterocytes. A cosmid library of total DNA of the strain, expressed in laboratory strains of E. coli, was screened by a rapid hemadsorption method, and a number of positive clones were identified. Restriction endonuclease fragments specifying mannose-resistant adherence were subcloned from the cosmid DNA of a strongly hemagglutinating clone in a plasmid vector. The identity of the adhesin was confirmed by biochemical, electron-microscopic, and immunological comparisons with the adhesin synthesized by the clinical isolate. It comprised a high-molecular-weight aggregate of a 14,000-dalton subunit protein which bound antiserum raised against the mannose-resistant adhesin of strain 469-3. The adhesin was synthesized by both the clone and the parental strain at growth temperatures above 18 degrees C but by only a fraction of the cells in a pure culture, although all the bacteria which adhered to human cells expressed the protein.  相似文献   

12.
In order to identify immunoreactive Bartonella henselae proteins, B. henselae antiserum from an experimentally infected cat was used to screen a B. henselae genomic DNA expression library. One immunoreactive phage clone contained a gene (p26) with significant nucleotide identity with orthologs in brucellae, bartonellae, and several plant-associated bacteria. p26 gene sequences from four B. henselae strains, one B. koehlerae strain, and one B. clarridgeiae strain were cloned. Comparative nucleotide sequence analysis showed that p26 is a potential marker for molecular diagnosis of infection, as well as for identification to species level and genotyping of Bartonella sp. isolates. Alignment of the predicted amino acid sequences illustrated conserved putative protein features including a hydrophobic transmembrane region, a peptide cleavage site, and four dominant antigenic sites. Expression of p26 in Escherichia coli produced two proteins (26 and 27.5 kDa), both of which were reactive with feline anti-B. henselae antisera. Furthermore, murine hyperimmune serum raised against either recombinant protein reacted with both proteins. No reactivity to either recombinant protein was detected in nonimmune serum, and reactivity persisted as long as 20 weeks for one cat. The p26 protein product is an immunodominant antigen that is expressed during infection in cats as a preprotein and is subsequently cleaved to form mature P26.  相似文献   

13.
Monoclonal antibodies (MAbs) were generated against vaccinia virus, cowpox virus KR2 Brighton, monkeypox virus Copenhagen, or ectromelia virus. Pairwise epitope specificity studies by competition ELISAs identified 23 distinct antigenic sites in 19 different orthopox virus strains. Six epitopes were completely independent of each other, and 17 closely related antigenic sites formed three separate epitope complexes. As shown by immunogold electron microscopy (ELMI), all MAbs reacted with epitopes in the envelope of intracellular naked virus, 16 MAbs recognized proteins of 32, 30, 16 or 14 kDa in Western blotting (WB), and 9 MAbs neutralized virus infectivity. In rabbitpox virus (RPV) 18 epitopes were detected. A λgt11 expression library of RPV DNA was screened with the corresponding 18 MAbs. Fourteen recombinant bacteriophage clones (ph) were isolated. Cross-hybridizations of phage and RPV DNA demonstrated a reaction with the HindIII A, HindIII D, or HindIII H fragments, respectively. DNA of ph3D was related to the A25L gene, which corresponds to the A-type inclusion body gene of cowpox virus. Two phage clones contained sequences of the 14-kDa fusion protein gene (A27L gene). Ph1A contained nearly the entire 14-kDa gene encoding 4 neutralizing (neutr) and 2 nonneutr epitopes. Ph5, expressing only half of this gene product, encoded 1 nonneutr epitope. The fusion protein of vaccinia virus MVA was isolated by immune-affinity chromatography with a neutr. catching MAb. The protein formed hollow rods (ELMI) and the 6 antigenic sites that were present were identical to those expressed by Escherichia coli infected with ph1A. WB detection with a polyclonal hyperimmune serum detected protein bands of 54, 32, 30, 16, and 14 kDa. The catching MAb bound only to a 16-kDa band. The purified fusion protein induced neutralizing antibodies in mice and rabbits.  相似文献   

14.
An HCMV specific clone was isolated from a genomic library of human cytomegalovirus (HCMV) DNA cloned into the expression vector lambda gt11. This clone (lambda 111-1) expressed an HCMV/beta-galactosidase fusion protein which was reactive with rabbit antibody prepared against purified HCMV virions and dense bodies as well as human HCMV immune serum. By probing Western blots of HCMV virion proteins or HCMV-infected cells with antibody prepared against the fusion protein, the authentic gene product of clone lambda 111-1 was identified as a high molecular weight polypeptide of 140. Probing the restriction digests of HCMV DNA with insert DNA from the immunoreactive lambda gt11 clone permitted us to localize the coding sequence for the 140 kDa polypeptide to the long unique region (map coordinates of 0.16-0.18) on HCMV Towne and AD169 genomes.  相似文献   

15.
A genomic library of Haemophilus somnus 2336, a virulent isolate from a calf with pneumonia (later used to reproduce H. somnus experimental pneumonia), was constructed in the cosmid vector pHC79. The gene bank in Escherichia coli DH1 was screened by filter immunoassay with convalescent-phase serum, which reacted with several outer membrane antigens of H. somnus. On Western blotting (immunoblotting) of immunoreactive colonies, five clones were found to express proteins which comigrated with H. somnus surface antigens. Three clones (DH1 pHS1, pHS3, and pHS4) expressed both a 120-kilodalton (kDa) antigen and a 76-kDa antigen, one clone (DH1 pHS2) expressed only the 76-kDa antigen, and the fifth clone (DH1 pHS5) expressed a 60-kDa antigen. The 120-kDa and 76-kDa antigens were found internally, whereas the 60-kDa protein was detected in the DH1 pHS5 culture supernatant as membrane blebs or insoluble protein. Both the H. somnus 120-kDa antigen and the recombinant 120-kDa antigen had immunoglobulin Fc-binding activity. Restriction endonuclease mapping demonstrated that the genomic DNA inserts of clones expressing the 76-kDa antigen shared a common 28.4-kilobase-pair region, and the three clones also expressing the 120-kDa antigen shared an additional 7.0-kilobase-pair region. The restriction endonuclease map of pHS5, which expressed the 60-kDa antigen, was not similar to the maps of the other four plasmids. Since these three H. somnus antigens reacted with protective convalescent-phase serum, the recombinants which express these proteins should be useful in further studies of protective immunity in bovine H. somnus disease.  相似文献   

16.
Screening of the Mycobacterium leprae cosmid library with pooled sera from lepromatous leprosy (LL) patients by a colony immunoblot technique resulted in the identification of about 100 colonies that produced immunologically reactive proteins. Twenty-four of these clones were purified, analyzed, and found to comprise two groups according to the reactivity of the recombinant proteins with LL sera and to the DNA restriction patterns of the recombinant plasmids and cosmids. Proteins specified by clones from group I reacted strongly with LL patients' sera on a Western blot (immunoblot), demonstrating a 15-kDa protein band designated A15. The A15 antigen also reacted with pooled sera from patients with tuberculoid leprosy from the United States and Brazil. Clones from group II did not show any reactive protein band on a Western blot, when reacted with patients' sera. DNAs from cosmids of group II all contain a 10-kb PstI fragment that hybridized to the unique repetitive M. leprae DNA. Sequence analysis of a 1.2-kb fragment containing the entire coding sequence of A15 revealed three open reading frames (ORFs), only one of which (ORF II) contains sufficient genetic information to encode for A15. Part of the A15 gene was found to exist also in a group of lambda gt11:M. leprae clones previously isolated in our laboratory by immunological screening with LL patients' sera. One of the lambda gt11 clones (L8) expresses a beta-galactosidase fusion protein with 89 amino acids from the C terminus of A15. An important result was that the fusion protein was clearly recognized by T cells from leprosy patients. Interestingly, Mycobacterium tuberculosis-stimulated T cells from M. leprae nonresponder (LL as well as borderline tuberculoid) patients were able to respond to the isolated recombinant M. leprae antigen, indicating that nonresponsiveness to M. leprae antigens can be reversible. The sequence of the M. leprae DNA fused to the beta-galactosidase gene of lambda gt11 clone L8 was identical to that of a lambda gt11:M. leprae clone isolated recently that expresses an immunologically reactive fusion protein (S. Laal, Y. D. Sharma, H. K. Prasad, A. Murtaza, S. Singh, S. Tangri, R. Misra, and I. Nath, Proc. Natl. Acad. Sci. USA 88:1054-1058, 1991). Besides the complete sequence of the A15 gene, sequencing data of two flanking ORFs are presented. Downstream from ORF II (A15), ORF III has a high degree of similarity to the genes for tomato ATP-dependent proteases that are members of a larger class of highly conserved proteases ubiquitous among prokaryotes and eukaryotes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Rickettsia prowazekii DNA was partially digested with Sau3A or HindIII, ligated with the cosmid vector pHC79, packaged in vitro, and transduced into Escherichia coli HB101. Cosmid cloning of Sau3A-digested rickettsial DNA yielded 1,288 ampicillin-resistant colonies; 798 cosmid clones resulted with HindIII-digested rickettsial DNA. Chimeric cosmid DNA was extracted from the latter gene bank, digested to completion with HindIII, and compared by agarose gel electrophoresis with a HindIII digest of rickettsial genomic DNA. The two digestion profiles were quite similar in their overall banding patterns, indicating that the clone bank was significantly representative of the rickettsial genome. When both clone banks were screened for expression of rickettsial antigens by enzyme-linked immunosorbent assay with goat anti-R. prowazekii serum, ca. 20% of the clones reacted positively. Two clones were randomly selected for more detailed analysis. Each contained a large chimeric plasmid (40.2 and 38.1 kilobases) which apparently yielded smaller deletion derivatives (13.6 and 12.6 kilobases) when transformed into an E. coli minicell strain. Each recombinant plasmid directed the synthesis of new protein species not observed in control minicells. One of the clones produced a 51,000-dalton protein in minicells, which comigrated with a protein reactive with anti-R. prowazekii serum. This protein was not present in negative controls. When antibodies to this protein were incubated with a Western blot of rickettsial total protein, they bound to a 52,000-dalton polypeptide. Hence, the cloned rickettsial gene product in E. coli corresponds to a protein of similar size in R. prowazekii. This study demonstrates the feasibility of cosmid cloning of rickettsial antigens in E. coli.  相似文献   

18.
Mycoplasma genitalium and Mycoplasma pneumoniae are morphologically and serologically related pathogens that colonize the human host. Their successful parasitism appears to be dependent on the product, an adhesin protein, of a gene that is carried by each of these mycoplasmas. Here we describe the cloning and determine the sequence of the structural gene for the putative adhesin of M. genitalium and compare its sequence to the counterpart P1 gene of M. pneumoniae. Regions of homology that were consistent with the observed serological cross-reactivity between these adhesins were detected at both DNA and protein levels. However, the degree of homology between these two genes and their products was much higher than anticipated. Interestingly, the A + T content of the M. genitalium adhesin gene was calculated as 60.1%, which is substantially higher tham that of the P1 gene (46.5%). Comparisons of codon usage between the two organisms revealed that M. genitalium preferentially used A- and T-rich codons. A total of 65% of positions 3 and 56% of positions 1 in M. genitalium codons were either A or T, whereas M. pneumoniae utilized A or T for positions 3 and 1 at a frequency of 40 and 47%, respectively. The biased choice of the A- and T-rich codons in M. genitalium could also account for the preferential use of A- and T-rich codons in conservative amino acid substitutions found in the M. genitalium adhesin. These facts suggest that M. genitalium might have evolved independently of other human mycoplasma species, including M. pneumoniae.  相似文献   

19.
Lipoteichoic acid and several streptococcal proteins have been reported to bind fibronectin (Fn) or fibrinogen (Fgn), which may serve as host receptors. We searched for such proteins by screening a library of genes from M type 5 group A streptococci cloned into Escherichia coli. Lysates of clones were probed with biotinylated Fn and biotinylated Fgn. One clone expressed a 54-kDa protein that reacted with Fn and Fgn. The protein, termed FBP54, was purified and used to immunize rabbits. Anti-FBP54 serum reacted with purified, recombinant FBP54 and with a protein of similar electrophoretic mobility in extracts of M type 5, 6, and 24 streptococci. Anti-FBP54 serum also reacted with 5 of 15 strains of intact, live streptococci, suggesting that FBP54 may be a surface antigen. Southern blot analysis confirmed that the gene is found in group A streptococci but not in Staphylococcus aureus or E. coli. The cloned gene was sequenced and contained an open reading frame encoding a protein with a calculated molecular weight of 54,186. Partial amino acid sequencing of purified FBP54 confirmed that this open reading frame encoded the protein. As determined by utilizing fusion proteins containing truncated forms of FBP54, the primary Fn/Fgn-binding domain appears to be contained in residues 1 to 89. These data suggest that FBP54 may be a surface protein of streptococci that reacts with both Fn and Fgn and therefore may participate in the adhesion of group A streptococci to host cells.  相似文献   

20.
Antiserum and purified immunoglobulin directed against Mycoplasma pneumoniae membrane protein P1 were examined for their influence on mycoplasma viability, metabolism, and cytadsorption. Anti-P1 immunoglobulin inhibited adherence of M. pneumoniae to hamster tracheal rings in vitro by up to 80% and inhibited hemadsorption by greater than 90%. Cytadsorption was also inhibited by anti-P1 Fab fragments. Anti-P1 antibodies had no effect on M. pneumoniae viability or metabolism. The data indicate that anti-P1 antibody obstructs the interaction of M. pneumoniae adhesin P1 with its host receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号