首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Cyclic hardening-softening behavior of a TRIP-aided dual-phase (TDP) steel composed of a ferrite matrix and retained austenite plus bainite second phase was examined at temperatures ranging from 20 °C to 200 °C. An increment of the cyclic hardening was related to (1) a long-range internal stress due to the second phase and (2) the strain-induced transformation (SIT) behavior of the retained austenite, as follows. Large cyclic hardening, similar to a conventional ferrite-martensite dual-phase steel, appeared in the TDP steel deformed at 20 °C, where the SIT of the retained austenite occurred at an early stage. This was mainly caused by a large increase in strain-induced martensite content or strain-induced martensite hardening, with a small contribution of the internal stress. In this case, shear and expansion strains on the SIT considerably decreased the internal stress in the matrix. With increasing deformation temperature or retained austenite stability, the amount of cyclic hardening decreased with a significant decrease in plastic strain amplitude. This interesting cyclic behavior was principally ascribed to the internal stress, which was enhanced by stable and strain-hardened retained austenite particles.  相似文献   

2.
The designed steel of Fe-0.25C-1.5Mn-1.2Si-1.5Ni-0.05Nb (wt pct) treated by a novel quenching-partitioning-tempering (Q-P-T) process demonstrates an excellent product of strength and elongation (PSE) at deformed temperatures from 298 K to 573 K (25 °C to 300 °C) and shows a maximum value of PSE (over 27,000 MPa pct) at 473 K (200 °C). The results fitted by the exponent decay law indicate that the retained austenite fraction with strain at a deformed temperature of 473 K (200 °C) decreases slower than that at 298 K (25 °C); namely, the transformation induced plasticity (TRIP) effect occurs in a larger strain range at 473 K (200 °C) than at 298 K (25 °C), showing better mechanical stability. The work-hardening exponent curves of Q-P-T steel further indicate that the largest plateau before necking appears at the deformed temperature of 473 K (200 °C), showing the maximum TRIP effect, which is due to the mechanical stability of considerable retained austenite. The microstructural characterization reveals that the high strength of Q-P-T steels results from dislocation-type martensite laths and dispersively distributed fcc NbC or hcp ε-carbides in martensite matrix, while excellent ductility is attributed to the TRIP effect produced by considerable retained austenite.  相似文献   

3.
In an attempt to understand the role of retained austenite on the cryogenic toughness of a ferritic Fe-Mn-AI steel, the mechanical stability of austenite during cold rolling at room temperature and tensile deformation at ambient and liquid nitrogen temperature was investigated, and the microstructure of strain-induced transformation products was observed by transmission electron microscopy (TEM). The volume fraction of austenite increased with increasing tempering time and reached 54 pct after 650 °C, 1-hour tempering and 36 pct after 550 °C, 16-hour tempering. Saturation Charpy impact values at liquid nitrogen temperature were increased with decreasing tempering temperature, from 105 J after 650 °C tempering to 220 J after 550 °C tempering. The room-temperature stability of austenite varied significantly according to the + γ) region tempering temperature;i.e., in 650 °C tempered specimens, 80 to 90 pct of austenite were transformed to lath martensite, while in 550 °C tempered specimens, austenite remained untransformed after 50 pct cold reductions. After tensile fracture (35 pct tensile strain) at -196 °C, no retained austenite was observed in 650 °C tempered specimens, while 16 pct of austenite and 6 pct of e-martensite were observed in 550 °C tempered specimens. Considering the high volume fractions and high mechanical stability of austenite, the crack blunting model seems highly applicable for improved cryogenic toughness in 550 °C tempered steel. Other possible toughening mechanisms were also discussed. Formerly Graduate Student, Seoul National University.  相似文献   

4.
The fatigue crack growth rates,da/dN, and the fracture toughness, KIc have been measured in two high-carbon martensitic stainless steels, 440C and BG42. Variations in the retained austenite contents were achieved by using combinations of austenitizing temperatures, refrigeration cycles, and tempering temperatures. In nonrefrigerated 440C tempered at 150 °C, about 10 vol pct retained austenite was transformed to martensite at the fracture surfaces duringK Ic testing, and this strain-induced transformation contributed significantly to the fracture toughness. The strain-induced transformation was progressively less as the tempering temperature was raised to 450 °C, and at the secondary hardening peak, 500 °C, strain-induced transformation was not observed. In nonrefrigerated 440C austenitized at 1065 °C,K Ic had a peak value of 30 MPa m1/2 on tempering at 150 °C and a minimum of 18 MPa m1/2 on tempering at 500 °C. Refrigerated 440C retained about 5 pct austenite, and did not exhibit strain-induced transformation at the fracture surfaces for any tempering temperature. TheK Ic values for corresponding tempering temperatures up to the secondary peak in refrigerated steels were consistently lower than in nonrefrigerated steels. All of the BG42 specimens were refrigerated and double or quadruple tempered in the secondary hardening region; theK Ic values were 16 to 18 MPa m1/2 at the secondary peak. Tempered martensite embrittlement (TME) was observed in both refrigerated and nonrefrigerated 440C, and it was shown that austenite transformation does not play a role in the TME mechanism in this steel. Fatigue crack propagation rates in 440C in the power law regime were the same for refrigerated and nonrefrigerated steels and were relatively insensitive to tempering temperatures up to 500 °C. Above the secondary peak, however, the fatigue crack growth rates exhibited consistently lower values, and this was a consequence of the tempering of the martensite and the lower hardness. Nonrefrigerated steels showed slightly higher threshold values, ΔKth, and this was ascribed to the development of compressive residual stresses and increased surface roughening in steels which exhibit a strain-induced martensitic transformation.  相似文献   

5.
The retained austenite content and carbon distribution in martensite were determined as a function of cooling rate and temper temperature in steel that contained 1.31 at. pct C, 3.2 at. pct Si, and 3.2 at. pct noniron metallic elements. Mössbauer spectroscopy, transmission electron microscopy (TEM), transmission synchrotron X-ray diffraction (XRD), and atom probe tomography were used for the microstructural analyses. The retained austenite content was an inverse, linear function of cooling rate between 25 and 560 K/s. The elevated Si content of 3.2 at. pct did not shift the start of austenite decomposition to higher tempering temperatures relative to SAE 4130 steel. The minimum tempering temperature for complete austenite decomposition was significantly higher (>650 °C) than for SAE 4130 steel (~300 °C). The tempering temperatures for the precipitation of transition carbides and cementite were significantly higher (>400 °C) than for carbon steels (100 °C to 200 °C and 200 °C to 350 °C), respectively. Approximately 90 pct of the carbon atoms were trapped in Cottrell atmospheres in the vicinity of the dislocation cores in dislocation tangles in the martensite matrix after cooling at 560 K/s and aging at 22 °C. The 3.2 at. pct Si content increased the upper temperature limit for stable carbon clusters to above 215 °C. Significant autotempering occurred during cooling at 25 K/s. The proportion of total carbon that segregated to the interlath austenite films decreased from 34 to 8 pct as the cooling rate increased from 25 to 560 K/s. Developing a model for the transfer of carbon from martensite to austenite during quenching should provide a means for calculating the retained austenite. The maximum carbon content in the austenite films was 6 to 7 at. pct, both in specimens cooled at 560 K/s and at 25 K/s. Approximately 6 to 7 at. pct carbon was sufficient to arrest the transformation of austenite to martensite. The chemical potential of carbon is the same in martensite that contains 0.5 to 1.0 at. pct carbon and in austenite that contains 6 to 7 at. pct carbon. There was no segregation of any substitutional elements.  相似文献   

6.
A systematic study of stress-induced and thermal-induced transformation of retained austenite in carburized 4320 steel with an initial retained austenite of 35 pct has been conducted. The transformation was monitored by recording the change in volume of smooth fatigue specimens. Stress-induced transformation was studied by conducting monotonic and cyclic tests at temperatures in the range from 22 °C to 150 °C. The volumetric transformation strain was as large as 0.006 at 22 °C. The anisotropy of the transformation was such that the axial transformation strain component exceeded the diametral transformation strain component by a factor of 1.4. Thermal-induced transformation was investigated with temperature stepup tests in the range from 150 °C to 255 °C at constant stress (-500 MPa, 0 MPa, and 500 MPa) and with static tests where temperature was held constant at zero load. The maximum thermal-induced volumetric transformation strain of 0.006 was independent of stress. However, the anisotropy of the transformation strain components was dependent on stress direction and magnitude. An axial tensile stress increased the axial transformation strain relative to the diametral transformation strain. The influence of low-temperature creep(T = 150 °C) on the anisotropy of strains is noted. The differences between stress-induced and thermal-induced transformation mechanisms are discussed. Thermal-induced transformation primarily occurred at temperatures between 100 °C and 200 °C, with the rate of transformation increasing with temperature, while the stress-induced transformation primarily occurred at 22 °C, with the rate of transformation decreasing with increasing temperature. There was no stress-induced transformation above 60 °C.  相似文献   

7.
The warm stretch formability and flangeability of 0.2 pct C-1.5 pct Si-5 pct Mn transformation-induced plasticity-aided sheet steel with annealed martensite matrix were investigated for automotive applications. Both formabilities were enhanced by warm forming at peak temperatures of 423 K to 573 K and 423 K to 523 K (150 °C to 300 °C and 150 °C to 250 °C), respectively. The superior warm formabilities were mainly due to the stabilization of a large amount of retained austenite by warm forming and the consequent considerably suppressed void growth at the interface between the matrix and transformed martensite, despite there being large hole punching damage for the stretch flangeability. High peak temperatures for stretch formability and flangeability were associated with apparently increased M S of the retained austenite resulting from the increased mean normal stress on stretch forming and hole expansion.  相似文献   

8.
The strain and strain rate dependence of the deformation behavior of Type 304 stainless steel sheet was evaluated by constant temperature tensile testing in the temperature range of −80 °C to 160 °C. The strain rate sensitivity, strain hardening rate, and ductility reflected the compctition of two strengthening mechanisms: strain-induced transformation of austenite to martensite and dislocation substructure formation. At low temperatures, the strain rate sensitivity and strain hardening rate correlated with the strain-induced transformation rate. A maximum in total ductility occurred between 0 °C and 25 °C, and the contributions of strain rate sensitivity and strain hardening to independent maxima with temperature of the uniform and post-uniform strains are discussed. Formerly Visiting Scientist, Department of Metallurgical Engineering, Colorado School of Mines.  相似文献   

9.
The microstructures and deformation behavior were studied in a high-temperature annealed high-manganese dual-phase (28 vol pct δ-ferrite and 72 vol pct γ-austenite) transformation-induced plasticity/twinning-induced plasticity (TRIP/TWIP) steel. The results showed that the steel exhibits a special Lüders-like yielding phenomenon at room temperature (RT) and 348 K (75 °C), while it shows continuous yielding at 423 K, 573 K and 673 K (150 °C, 300 °C and 400 °C) deformation. A significant TRIP effect takes place during Lüders-like deformation at RT and 348 K (75 °C) temperatures. Semiquantitative analysis of the TRIP effect on the Lüders-like yield phenomenon proves that a softening effect of the strain energy consumption of strain-induced transformation is mainly responsible for this Lüders-like phenomenon. The TWIP mechanism dominates the 423 K (150 °C) deformation process, while the dislocation glide controls the plasticity at 573 K (300 °C) deformation. The delta-ferrite, as a hard phase in annealed dual-phase steel, greatly affects the mechanical stability of austenite due to the heterogeneous strain distribution between the two phases during deformation. A delta-ferrite-aided TRIP effect, i.e., martensite transformation induced by localized strain concentration of the hard delta-ferrite, is proposed to explain this kind of Lüders-like phenomenon. Moreover, the tensile curve at RT exhibits an upward curved behavior in the middle deformation stage, which is principally attributed to the deformation twinning of austenite retained after Lüders-like deformation. The combination of the TRIP effect during Lüders-like deformation and the subsequent TWIP effect greatly enhances the ductility in this annealed high-manganese dual-phase TRIP/TWIP steel.  相似文献   

10.
Austenitic specimens of Fe-15 wt pct Ni-0.8 wt pct C were tested in tension at strain rates of 10−4 s−1 and 10−1 s−1 over the temperature range −20°C to 60 °C. The influence of strain rate and temperature on the deformation behavior depended on whether stress-assisted or strain-induced martensitic trans-formation occurred during testing. Under conditions of stress-assisted transformation, the ductility was low and independent of strain rate. However, when strain-induced transformation occurred, the duc-tility increased significantly and the higher strain rate resulted in greater ductility and more transfor-mation. Although the ductility increased continuously with temperature, the amount of strain-induced transformation decreased and no martensite was observed above 40 °C. Microstructural examination showed that the martensite was replaced by intense bands and that these bands contained very fine (111) fcc twins. The twinning resulted in enhanced plasticity by providing an additional mode of deformation as slip became more difficult due to dynamic strain aging at the higher temperature. This study confirms that the substructure following deformation will depend on the proximity of the deformation temperature to theM s σ temperature. At temperatures much greater thanM s σ , austenite twinning will occur, while at temperatures close toM s σ , bcc martensite will form.  相似文献   

11.
In the present study, the relationship between the microstructure and the mechanical properties of Fe-10 pct Mn-3 pct Al-2 pct Si-0.3 pct C multi-phase steel was investigated. The 10 pct Mn multi-phase steel exhibits a combination of high tensile strength and enhanced ductility resulting from deformation-twinning and strain-induced transformation occurring in succession. A pronounced intercritical annealing temperature dependence of the tensile behavior was observed. The annealing temperature dependence of the retained austenite volume fraction, composition, and the grain size was analyzed experimentally, and the effect of the microstructural parameters on the kinetics of mechanical twinning and strain-induced martensite formation was quantified. A dislocation density-based constitutive model was developed to predict the mechanical properties of 10 pct Mn multi-phase steel. The model also allows for the determination of the critical strain for dynamic strain aging effect.  相似文献   

12.
The effect of phosphorus and silicon on the formation of retained austenite has been investigated in a low-carbon steel cold rolled, intercritically annealed, and isothermally held in a temperature range of bainitic transformation followed by air cooling. The steel sheet containing phosphorus after final heat-treatment consisted of ferrite, retained austenite, and bainite or martensite. Phosphorus, especially in the presence of silicon, in steel was useful to assist the formation of retained austenite. Mechanical properties, such as tensile strength, uniform elongation, and the combination of tensile strength/ductility, were improved when phosphorus was increased up to 0.07 pct in 0.5 pct Si steel. This could be attributed to the strain-induced transformation of retained austenite during tensile deformation. Furthermore, two types of retained austenite were observed in P-containing steel. One is larger than about 1 μm in size and usually exists adjacent to bainite; the other one is of submicron size and usually exists in a ferrite matrix. High phosphorus content promotes the formation of stable (small size) austenites which are considered to be stabilized mainly by their small size effect and have a different formation mechanism from the coarser retained austenite in the lower P steels. The retained austenites of submicron size showed mechanical stability even after 10 pct deformation, suggesting that these small austenites have little effect on ductility. The 0.07 pct P-0.5 pct Si-1.5 pct Mn-0.12 pct C steel showed a high strength of 730 MPa and a total elongation of 36 pct.  相似文献   

13.
The relation between austenite stability and the tensile properties, as affected by testing temperature and processing, was studied for a series of alloys of increasing compositional complexity, viz., the Fe-Ni, Fe-Ni-C, and Fe-Ni-Cr-Mn-C systems. The “stress” and “strain induced” modes of transformation to martensite differed significantly in their influence on the shape of the stress-strain curve. Under certain testing conditions, unusually low yield strengths and high work hardening rates were observed in some of these alloys. Maxima in yield strengths were observed for all austenitic alloys containing carbon that were processed at deformation temperatures between 200° and 300°C. Evidence gleaned from electron microscopy and magnetic and mechanical testing suggested that the maxima were due to the formation of carbon atmospheres on dislocations during processing. The influence of austenite stability on the mechanical properties of steels, varied by systematic changes in test temperature (22° to -196°C), composition (8 pct, 12 pct, 16 pct, and 21 pct Ni) and deformation temperature (25° to 450°C), was evaluated quantitatively. An erratum to this article is available at .  相似文献   

14.
The influence of retained austenite on the work hardening behavior of dual-phase steel has been investigated with an Fe-0.07 C-1.8 Mn-1.4 Si steel. With a constant cooling rate of 5 °C per second after intercritical annealing at 780 °C, a significant quantity (about 8 vol pct) of retained austenite was obtained in the dual-phase microstructure. The retained austenite was classified morphologically into either ‘isolated’ or ‘capsulated’ types by TEM observation. The ‘capsulated’ type, which was found without a particular shape inside the microtwinned martensite particle, withstood much deformation by being protected by the surrounding martensite. While the ‘isolated’ type, which was found with an equiaxed shape and was isolated from martensite particles, was easily deformed by the first several percent plastic strain. The increase in work hardening rate, caused by the strain induced transformation of retained austenite to martensite, was ascribed to the contribution of the ‘isolated’ type, the major volume fraction of retained austenite. The effect of the retained austenite on the yielding of dual-phase steel was not indicated since the reduction in the volume fraction of retained austenite was negligible at the initial deformation stage.  相似文献   

15.
In excess of 30 vol. pct austenite can be retained in 0.3C-4.0Mn steels subjected to a dual stabilization heat treatment (DSHT) schedule—a five stage precisely controlled cooling schedule that is a variant of the quench and partition process. The temperature of the second quench (stage III) in the DSHT process plays an essential role in the retained austenite contents produced at carbon-partitioning temperatures of 723 K or 748 K (450° C or 475 °C) (stage IV). A thermodynamic model successfully predicted the retained austenite contents in heat-treated steels, particularly for a completely austenitized material. The microstructure and mechanical behavior of two heat-treated steels with similar levels of retained austenite (~30 vol. pct) were studied. Optimum properties—tensile strengths up to 1650 MPa and ~20 pct total elongation—were observed in a steel containing 0.3C-4.0Mn-2.1Si, 1.5 Al, and 0.5 Cr.  相似文献   

16.
As-received hot-rolled commercial grade AISI 304L austenitic stainless steel plates were solution treated at 1060 °C to achieve chemical homogeneity. Microstructural characterization of the solution-treated material revealed polygonal grains of about 85-μm size along with annealing twins. The solution-treated plates were heavily cold rolled to about 90 pct of reduction in thickness. Cold-rolled specimens were then subjected to thermal cycles at various temperatures between 750 °C and 925 °C. X-ray diffraction showed about 24.2 pct of strain-induced martensite formation due to cold rolling of austenitic stainless steel. Strain-induced martensite formed during cold rolling reverted to austenite by the cyclic thermal process. The microstructural study by transmission electron microscope of the material after the cyclic thermal process showed formation of nanostructure or ultrafine grain austenite. The tensile testing of the ultrafine-grained austenitic stainless steel showed a yield strength 4 to 6 times higher in comparison to its coarse-grained counterpart. However, it demonstrated very poor ductility due to inadequate strain hardenability. The poor strain hardenability was correlated with the formation of strain-induced martensite in this steel grade.  相似文献   

17.
The uniaxial tensile properties of a series of TRIP steels of varying carbon contents and processing histories were determined over a wide range of test temperatures. The yield strengths at room temperature varied both with the deformation temperature (over the range 250° to 550°C) and with the carbon content (0.05 to 0.20 pct). Possible reasons for these variations are advanced. For all steels, the −100°C yield strengths were substantially lower than the 100°C yield strengths. The minima and maxima in the yield strengths vs temperatures curves were especially pronounced for the steels processed at the lowest deformation temperatures. Both the rate of work hardening and the elongation were influenced by the strain-induced austenite-to-martensite transformation. The rate of strain hardening and the rate of production of strain-induced martensite (per unit strain) increased with decreasing temperature. Formerly Graduate Student, University of California, Berkeley, Calif.  相似文献   

18.
The effects of the addition of Cr, Mo, and/or Ni on the Charpy impact toughness of a 0.2 pct C-1.5 pct Si-1.5 pct Mn-0.05 pct Nb transformation-induced plasticity (TRIP)-aided steel with a lath-martensite structure matrix (i.e., a TRIP-aided martensitic steel or TM steel) were investigated with the aim of using the steel in automotive applications. In addition, the relationship between the toughness of the various alloyed steels and their metallurgical characteristics was determined. When Cr, Cr-Mo, or Cr-Mo-Ni was added to the base steel, the TM steel exhibited a high upper-shelf Charpy impact absorbed value that ranged from 100 to 120 J/cm2 and a low ductile–brittle fracture appearance transition temperature that ranged from 123 K to 143 K (?150 °C to ?130 °C), while also exhibiting a tensile strength of about 1.5 GPa. This impact toughness of the alloyed steels was far superior to that of conventional martensitic steel and was caused by the presence of (i) a softened wide lath-martensite matrix, which contained only a small amount of carbide and hence had a lower carbon concentration, (ii) a large amount of finely dispersed martensite-retained austenite complex phase, and (iii) a metastable retained austenite phase of 2 to 4 vol pct in the complex phase, which led to plastic relaxation via strain-induced transformation and played an important role in the suppression of the initiation and propagation of voids and/or cleavage cracks.  相似文献   

19.
Tempered martensite-retained austenite microstructures were produced by direct quenching a series of 41XX medium carbon steels, direct quenching and reheating a series of five 0.8C-Cr- Ni-Mo steels and intercritically austenitizing at various temperatures, and quenching a SAE 52100 steel. All specimens were tempered either at 150 °C or at 200 °C. Specimens were subjected to compression and tension testing in the microstrain regime to determine the elastic limits and microplastic response of the microstructures. The retained austenite and matrix carbon content of the intercritically austenized specimens were measured by X-ray diffraction and Mossbauer spectroscopy. The elastic limit of the microstructures decreases with increasing amounts of retained austenite. Refining of the austenite distribution increases the elastic limit. Low elastic limits are mainly due to low flow stresses in the austenite and not internal stresses. The elastic limit correlates with the largest austenite free-mean path by a Hall-Petch type equation. The elastic limit increases with decreasing intercritical austenitizing temperature in the SAE 52100 due to (1) a lower carbon content in the matrix reducing the retained austenite levels and (2) retained carbides that refine grain size and, therefore, the austenite distribution in quenched specimens. The microplastic response of stable austenite-martensite composites may be modeled by a rule of mixtures. In the microplastic region, the strain is accommodated by successively smaller austenite regions until the flow strength matches that of the martensite. Reheating and quenching refines the microstructure and renders the austenite unstable in the microplastic regime, causing transformation of the austenite to martensite by a strain-induced mechanism. The transformation of austenite to martensite occurs by a stress-assisted mechanism in medium carbon steels. The low elastic limits in medium carbon steels were due to the inability of the strain from the stress-assisted transformation of austenite to martensite to balance the plastic strain accumulated in the austenite.  相似文献   

20.
Metallographic studies have been conducted on a 0.024 pct C-16 pct Cr-1.5 pct Mo-5 pct Ni stainless steel to study the phase reactions associated with heat treatments and investigate the strengthening mechanisms of the steel. In the normalized condition, air cooled from 1010 °C, the microstructure consists of 20 pct ferrite and 80 pct martensite. Tempering in a temperature range between 500 and 600 °C results in a gradual transformation of martensite to a fine mixture of ferrite and austenite. At higher tempering temperatures, between 600 and 800 °C, progressively larger quantities of austenite form and are converted during cooling to proportionally increasing amounts of fresh martensite. The amount of retained austenite in the microstructure is reduced to zero at 800 °C, and the microstructure contains 65 pct re-formed martensite and 35 pct total ferrite. Chromium rich M23C6 carbides precipitate in the single tempered microstructures. The principal strengthening is produced by the presence of martensite in the microstructure. Additional strengthening is provided by a second tempering treatment at 400 °C due to the precipitation of ultrafine (Cr, Mo) (C,N) particles in the ferrite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号