首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Relative rate methods were used to measure the gas-phase reaction of N-methyl perfluorobutane sulfonamidoethanol (NMeFBSE) with OH radicals, giving k(OH + NMeFBSE) = (5.8 +/- 0.8) x 10(-12) cm3 molecule(-1) s(-1) in 750 Torr of air diluent at 296 K. The atmospheric lifetime of NMeFBSE is determined by reaction with OH radicals and is approximately 2 days. Degradation products were identified by in situ FTIR spectroscopy and offline GC-MS and LC-MS/MS analysis. The primary carbonyl product C4F9SO2N(CH3)CH2CHO, N-methyl perfluorobutane sulfonamide (C4F9SO2NH(CH3)), perfluorobutanoic acid (C3F7C(O)OH), perfluoropropanoic acid (C2F5C(O)OH), trifluoroacetic acid (CF3C(O)OH), carbonyl fluoride (COF2), and perfluorobutane sulfonic acid (C4F9SO3H) were identified as products. A mechanism involving the addition of OH to the sulfone double bond was proposed to explain the production of perfluorobutane sulfonic acid and perfluorinated carboxylic acids in yields of 1 and 10%, respectively. The gas-phase N-dealkylation product, N-methyl perfluorobutane sulfonamide (NMeFBSA), has an atmospheric lifetime (>20 days) which is much longer than that of the parent compound, NMeFBSE. Accordingly,the production of NMeFBSA exposes a mechanism by which NMeFBSE may contribute to the burden of perfluorinated contamination in remote locations despite its relatively short atmospheric lifetime. Using the atmospheric fate of NMeFBSE as a guide, it appears that anthropogenic production of N-methyl perfluorooctane sulfonamidoethanol (NMeFOSE) contributes to the ubiquity of perfluoroalkyl sulfonate and carboxylate compounds in the environment.  相似文献   

2.
Degradation of C4F9C2H4OH in air over TiO2 particles was examined in this first report of gas-solid heterogeneous photochemical degradation of fluorotelomer alcohols (FTOHs), which may be precursors of perfluorocarboxylic acids (PFCAs) in the environment. Photoirradiation (>290 nm) of C4F9C2H4OH in air flowing over TiO2 produced CO2, via C4F9CH2CHO, C4F9CHO, CnF(2n+1)COF (n=2 and/or 3), and COF2, in that order. X-ray photoelectron spectroscopy of the Ti02 surface showed a decrease in the amount of fluorine bonded to carbon and an increase in the amount of F- as the degradation of C4F9C2H4OH in air proceeded. Of the carbon content in the initial C4F9C2H4OH (78.8 ppmv), 90.7% was transformed to CO2, and the predominant fluorine species produced on the TiO2 surface was F-. Fluorotelomer unsaturated acids, which are considered to be toxic and have been observed in the biodegradation of FTOHs, did notform. Increased relative humidity in the air accelerated the decomposition of the reaction intermediates, which led to increased CO2 and F- formation. This result indicates that humidity is a key factor for counteracting FTOHs in indoor air. Although perfluoroalkyl substances such as PFCAs in water reportedly undergo little photodegradation over TiO2, our data show that mineralization of C4F9C2H4OH in air can be achieved with TiO2.  相似文献   

3.
Relative rate techniques were used to measure k(OH + HFE-7500) = (2.6+/-0.6) x 10(-14), k(Cl + HFE-7500) = (2.3+/-0.7) x 10(-12), k[Cl + n-C3F7CF(OC(O)H)CF(CF3)2] = (9.7+/-1.4) x 10(-15), and k[Cl + n-C3F7CF(OC(O)CH3)CF(CF3)2] < 6 x 10(-17) cm3 molecule(-1) s(-1) at 295 K [HFE-7500 = n-C3F7-CF(OC2H5)CF(CF3)2]. From the value of k(OH + HFE-7500) an estimate of 2.2 years for the atmospheric lifetime of HFE-7500 is obtained. Two competing loss mechanisms for n-C3F7-CF(OCHO.CH3)CF(CF3)2 radicals were identified in 700 Torr of N2/O2 diluent at 295 K; reaction with O2 and decomposition via C-C bond scission with kO2/k(decomp) = 0.013+/-0.006 Torr(-1). The Cl atom initiated oxidation of HFE-7500 in N2/O2 diluent gives n-C3F7CF(OC(O)CH3)CF(CF3)2 as the major product and n-C3F7CF(OC(O)H)CF(CF3)2 as a minor product. The atmospheric oxidation of HFE-7500 gives n-C3F7-CF(OC(O)CH3)CF(CF3)2 and n-C3F7CF(OC(O)H)CF(CF3)2 as oxidation products. The results are discussed with respect to the atmospheric chemistry and environmental impact of HFE-7500.  相似文献   

4.
Photocatalytic oxidation of gaseous 2-chloroethyl ethyl sulfide (2-CEES, ClCH2CH2SCH2CH3) over TiO2 illuminated with UV light and maintained at 25 or 80 degrees C in air has been investigated. 2-CEES was found to suffer progressive oxidation to yield ethylene (CH2CH2), chloroethylene (ClCHCH2), ethanol (CH3CH2OH), acetaldehyde (CH3C(O)H), chloroacetaldehyde (ClCH2C(O)H), diethyl disulfide (CH3CH2S2CH2CH3), 2-chloroethyl ethyl disulfide (ClCH2CH2S2CH2CH3), and bis(2-chloroethyl) disulfide (ClCH2CH2S2CH2CH2Cl) as the main primary intermediates, and water (H2O), carbon dioxide (CO2), sulfur dioxide (SO2), surface sulfate ions (SO4(2-)), and hydrogen chloride (HCl) as the final products. Trace concentrations of gaseous 2-chloroethanol (ClCH2CH2OH), ethanesulfonyl chloride (CH3CH2SO2Cl), ethyl thioacetate (CH3CH2SC(O)CH3), and considerable amounts of acetic acid (CH3C(O)OH), crotonaldehyde (CH3CHCHC(O)H), methyl acetate (CH3C(O)OCH3), and methyl formate (CH3OC(O)H) were also detected in the gas phase during the photooxidation conducted at 80 degrees C. Increase in temperature from 25 to 80 degrees C accelerates formation of gaseous ethanol, acetaldehyde, chloroacetaldehyde, diethyl disulfide, 2-chloroethyl ethyl disulfide, and bis(2-chloroethyl) disulfide but suppresses ethylene and chloroethylene production at initial stages of the process. Some aspects of the possible reaction mechanism leading to this wide array of intermediates and final products are discussed.  相似文献   

5.
Smog chamber/FTIR techniques were used to study the atmospheric chemistry of the title compound which we refer to as RfOC2H5. Rate constants of k(Cl + RfOC2H5) = (2.70 +/- 0.36) x 10(-12), k(OH + RfOC2H5) = (5.93 +/- 0.85) x 10(-14), and k(Cl + RfOCHO) = (1.34 +/- 0.20) x 10(-14) cm3 molecule(-1') s(-1) were measured in 700 Torr of N2, or air, diluent at 294 +/- 1 K. From the value of k(OH + RfOC2H5) the atmospheric lifetime of RfOC2H5 was estimated to be 1 year. Two competing loss mechanisms for RfOCH(O*)CH3 radicals were identified in 700 Torr of N2/O2 diluent at 294 +/- 1 K; decomposition via C-C bond scission giving a formate (RfOCHO), or reaction with 02 giving an acetate (RfOC(O)CH3). In 700 Torr of N2/O2 diluent at 294 +/- 1 K the rate constant ratio k(O2)/k(diss) = (1.26 +/- 0.74) x 10(-19) cm3 molecule(-1). The OH radical initiated atmospheric oxidation of RfOC2H5 gives Rf0CHO and RfOC(O)CH3 as major products. RfOC2H5 has a global warming potential of approximately 55 for a 100 year horizon. The results are discussed with respect to the atmospheric chemistry and environmental impact of RfOC2H5.  相似文献   

6.
Isolated water-soluble atmospheric organic matter (AOM) analytes extracted from radiation fogwater samples were analyzed using collision induced dissociation with ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Tandem mass analysis was performed on several mass ranges between 100 and 400 Da to characterize the functional groups of AOM species. Compounds containing nitrogen and/or sulfur were targeted because of the high number of oxygen atoms contained in their molecular formulas. Due to the large number of isobaric ions in the precursor isolation ranges, large numbers of product ions resulted from collision induced dissociation. Common neutral losses were assigned by matching the molecular formulas of the expected product ions with the detected product ions within the appropriate mass spectra. Since polar functional groups are expected to affect the hygroscopic properties of aerosols, the losses of H(2)O, CO(2), CH(3)OH, HNO(3), CH(3)NO(3), SO(3), SO(4) and combinations of these were specifically targeted. Among the 421 compounds studied, the most frequently observed neutral losses were CO(2) (54%), H(2)O (43%) and CH(3)OH (40%). HNO(3) losses were observed for 63% of the studied nitrogen containing compounds and 33% of the studied compounds containing both nitrogen and sulfur. SO(3) losses were observed for 85% of the studied sulfur containing compounds and 42% of studied compounds containing both nitrogen and sulfur. A number of molecular formulas matching those of monoterpene ozonolysis SOA were observed; they include organonitrates, organosulfates, and nitroxy-organosulfates. Overall, the results of fragmentation analysis of 400+ individual molecular precursors elucidate the complexity and multifunctional nature of the isolated water-soluble AOM.  相似文献   

7.
Relative rate techniques were used to study the kinetics of the reactions of Cl atoms and OH radicals with a series of fluorotelomer alcohols, F(CF2CF2)nCH2CH2OH (n = 2, 3, 4), in 700 Torr of N2 or air, diluent at 296 +/- 2K. The length of the F(CF2CF2)n- group had no discernible impact on the reactivity of the molecule. For n = 2, 3, or 4, k(Cl + F(CF2CF2)nCH2CH2OH) = (1.61 +/- 0.49) x 10(-11) and k(OH + F(CF2CF2)nCH2CH2OH) = (1.07 +/- 0.22) x 10(-12) cm3 molecule(-1) s(-1). Consideration of the likely rates of other possible atmospheric loss mechanisms leads to the conclusion that the atmospheric lifetime of F(CF2CF2)nCH2CH2OH (n > or = 2) is determined by reaction with OH radicals and is approximately 20 d.  相似文献   

8.
The OH-initiated oxidation of two VOCs directly emitted to the atmosphere through their use as industrial solvents, hexylene glycol (HG, (CH3)2C(OH)CH2CH(OH)CH3) and diacetone alcohol (DA, (CH3)2C(OH)CH2C(O)CH3), has been studied in two photoreactors: a 140 L Teflon bag irradiated by lamps at CNRS-Orleans and the 200 m3 European photoreactor, EUPHORE, irradiated by sunlight. The rate constants for the reactions of HG and DA with OH radicals have been determined at (298 +/- 3) K using a relative rate method: k(HG) = (1.5 +/- 0.4) x 10(-11) and k(DA) = (3.6 +/- 0.6) x 10(-12) cm(3) molecule(-1) s(-1) and have been found in good agreement with estimations from structure-reactivity relationships. The study at Orleans and EUPHORE of the OH-initiated oxidation of hexylene glycol showed the formation of diacetone alcohol, acetone, and PAN as the principal products. The branching ratio of the H-atom abstraction from the > CH- group of HG has been estimated to be (47 +/- 4)% corresponding to the measured formation yield of DA. The formation yields of acetone and PAN lead to the determination of a lower limit of (33 +/- 7)% for the branching ratio of the H-atom abstraction of the -CH2- group of HG. For diacetone alcohol, studies at EUPHORE have shown negligible photolysis under atmospheric conditions (J < 5 x 10(-6) s(-1)) and the formation of acetone, PAN, HCHO, and CO in the OH-initiated oxidation experiments. The molar yield of acetone, close to 100%, corresponds to the branching ratio of the H-atom abstraction from the -CH2- group of DA. The present study has allowed the identification of the nature and the fate of the oxy radicals as intermediates in the oxidation mechanism of both HG and DA. The atmospheric implication of these results, especially the ozone formation potential of HG and DA, is discussed.  相似文献   

9.
The gas-phase reaction of CHF3 with CH4 has been studied experimentally and computationally. The motivation behind the study is that reaction of CHF3 with CH4 provides a possible route for synthesis of CH2=CF2 (C2H2F2). Experiments are carried out in a plug flow, isothermal alpha-alumina reactor at atmospheric pressure over the temperature range of 973-1173 K. To assist in understanding the reaction mechanism and the role of the reactor material involved in the reaction of CHF3 with CH4, the reaction of CHF3 with CH4, pyrolysis of CH4, and pyrolysis of CHCIF2 have been studied in the presence of alpha-alumina or alpha-AIF3 particles under various conditions. Under all conditions studied for the reaction of CHF3 and CH4, the major products are C2F4, C2H2F2, and HF. Minor products include C2H2, C2H4, C2H3F, C2HF3, C3F6, CO2, and H2. C2H6, CH2F2, and CHF2CHF2 are detected in trace amounts. The initial step is the gas-phase unimolecular decomposition of CHF3, producing CF2 and HF. It is proposed that CF2 decomposes on the surface of alpha-alumina, producing F radicals that are responsible for the activation of CH4. A reaction scheme developed on the basis of the existing NIST HFC and GRI-Mech 3.0 mechanisms is used to model the reaction of CHF3 with CH4. Generally satisfactory agreement between experimental and modeling results is obtained on the conversion levels of CHF3 and CH4 and rates of formation of major products. Using the software package AURORA, the reaction pathways leading to the formation of major products are elucidated.  相似文献   

10.
We use historical and new atmospheric trace gas observations to refine the estimated source of methane (CH(4)) emitted into California's South Coast Air Basin (the larger Los Angeles metropolitan region). Referenced to the California Air Resources Board (CARB) CO emissions inventory, total CH(4) emissions are 0.44 ± 0.15 Tg each year. To investigate the possible contribution of fossil fuel emissions, we use ambient air observations of methane (CH(4)), ethane (C(2)H(6)), and carbon monoxide (CO), together with measured C(2)H(6) to CH(4) enhancement ratios in the Los Angeles natural gas supply. The observed atmospheric C(2)H(6) to CH(4) ratio during the ARCTAS (2008) and CalNex (2010) aircraft campaigns is similar to the ratio of these gases in the natural gas supplied to the basin during both these campaigns. Thus, at the upper limit (assuming that the only major source of atmospheric C(2)H(6) is fugitive emissions from the natural gas infrastructure) these data are consistent with the attribution of most (0.39 ± 0.15 Tg yr(-1)) of the excess CH(4) in the basin to uncombusted losses from the natural gas system (approximately 2.5-6% of natural gas delivered to basin customers). However, there are other sources of C(2)H(6) in the region. In particular, emissions of C(2)H(6) (and CH(4)) from natural gas seeps as well as those associated with petroleum production, both of which are poorly known, will reduce the inferred contribution of the natural gas infrastructure to the total CH(4) emissions, potentially significantly. This study highlights both the value and challenges associated with the use of ethane as a tracer for fugitive emissions from the natural gas production and distribution system.  相似文献   

11.
Anthropogenic sources release into the troposphere a wide range of volatile organic compounds (VOCs) including aromatic hydrocarbons, whose major sources are believed to be combustion and the evaporation of fossil fuels. An important question is whether there are other sources of aromatics in air. We report here the formation of p-cymene [1-methyl-4-(1-methylethyl) benzene, C6H4(CH3)(C3H7)] from the oxidation of α-pinene by OH, O3, and NO3 at 1 atm in air and 298 K at low (<5%) and high (70%) relative humidities (RH). Loss of α-pinene and the generation of p-cymene were measured using GC-MS. The fractional yields of p-cymene relative to the loss of α-pinene, Δ [p-cymeme]/Δ [α-pinene], were measured to range from (1.6±0.2)×10(-5) for the O3 reaction to (3.0±0.3)×10(-4) for the NO3 reaction in the absence of added water vapor. The yields for the OH and O3 reactions increased by a factor of 4-8 at 70% RH (uncertainties are ±2s). The highest yields at 70% RH for the OH and O3 reactions, ~15 times higher than for dry conditions, were observed if the walls of the Teflon reaction chamber had been previously exposed to H2SO4 formed from the OH oxidation of SO2. Possible mechanisms of the conversion of α-pinene to p-cymene and the potential importance in the atmosphere are discussed.  相似文献   

12.
Dimethyl sulfoxide (CH3S(O)CH3: DMSO) is an important product of dimethyl sulfide (CH3SCH3: DMS) photooxidation. The mechanism of the OH-radical initiated oxidation of DMSO is still highly uncertain and a major aim of recent studies has been to establish if methane sulfinic acid (CH3S(O)OH: MSIA) is a major reaction product In the present work the products of the OH-radical gas-phase oxidation of dimethyl sulfoxide have been investigated in the absence and presence of NOx All experiments were performed in a 1,080 L reaction chamber in 1,000 mbar synthetic air at 284 +/- 2 K using long-path FT-IR spectroscopy and ion chromatography to monitor and quantify reactants and reaction products. Formation of methane sulfinic acid in high yield (80-99%) was observed in both in the absence and presence of NOx, and the results support that it is the major primary reaction product Other products observed included dimethyl sulfone (CH3S(O)2CH3: DMSO2), sulfur dioxide (SO2), methane sulfonic acid (CH3S(O)2OH: MSA), and methane sulfonyl peroxynitrate (CH3S(O)2OONO2: MSPN). The formation behavior of these products is in line with their source being mainly secondary production via oxidation of a primary product, i.e. MSIA.  相似文献   

13.
Heterogeneous oxidation of carbonyl sulfide (OCS) on atmospheric particles and alumina (Al2O3) was investigated in a closed system and a flowed system using in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). At room temperature, OCS could be catalytically oxidized on the surface of atmospheric particles and Al2O3 to form gas-phase CO2 and surface sulfate (SO4(2-)), sulfite (HSO3-), and hydrogen carbonate (HCO3-) species. The real atmospheric particles were characterized using X-ray fluorescence (XRF) and the Brunauer-Emmett-Teller (BET) method. As a simplified model, Al2O3 was used to study the reaction mechanism of heterogeneous oxidation of OCS. The hydrogen thiocarbonate surface (HSCO2-) species, an intermediate formed in the reaction of OCS with surface hydroxyl (OH), could only be observed on the prereduced Al2O3 sample. The experimental results also indicate that surface oxygen containing species on the atmospheric particle sample and the Al2O3 sample might be the key reactant for OCS oxidation. A reaction mechanism of heterogeneous oxidation of OCS on Al2O3 surface is discussed.  相似文献   

14.
1,3-Butadiene and isoprene (2-methyl-1,3-butadiene) are emitted into the atmosphere in vehicle exhaust and, in the case of isoprene, from vegetation. We have investigated the formation and further reaction of products of their hydroxyl radical-initiated reactions using atmospheric pressure ionization mass spectrometry (API-MS) and solid-phase microextraction fibers precoated with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine for on-fiber derivatization of carbonyl compounds, with subsequent analysis by thermal desorption and gas chromatography with flame ionization detection (SPME/GC-FID) or MS detection. Products attributed as HOCH2CH=CHCHO and HOCH2CH=CHCH2ONO2 (and isomers) from 1,3-butadiene; HOCD2CD=CDCDO and HOCD2CD=CDCD2ONO2 (and isomers) from 1,3-butadiene-d6; HOCH2C(CH3)=CHCHO and/or HOCH2CH=C(CH3)CHO, and HOCH2C(CH3)=CHCH2ONO2 (and isomers) from isoprene; and HOCD2C(CD3)=CDCDO and/or HOCD2CD=C(CD3)CDO, and HOCD2C(CD3)=CDCD2ONO2 (and isomers) from isoprene-d8 were observed as their NO2- adducts in the API-MS analyses. The hydroxycarbonyls were observed from SPME/GC-FID analyses of the 1,3-butadiene and isoprene reactions as their oximes, together with acrolein, glycolaldehyde, and glyoxal from the 1,3-butadiene reaction. A rate constant for the reaction of OH radicals with 4-hydroxy-2-butenal of (5.7 +/- 1.4) x 10(-11) cm3 molecule(-1) s(-1) at 298 +/- 2 K was derived, and formation yields of acrolein and 4-hydroxy-2-butenal from the 1,3-butadiene reaction of 58 +/- 10% and 25 (+15/-10)%, respectively, were determined. Analogous experiments showed that the two C5-hydroxycarbonyls formed from isoprene have rate constants for their reactions with OH radicals of (1.0 +/- 0.3) x 10(-10) cm3 molecule(-1) s(-1) and (4 +/- 2) x 10(-11) cm3 molecule(-1) s(-1) and a combined yield of approximately 15%, although isomer-specific identification of the hydroxycarbonyls was not achieved.  相似文献   

15.
3-Hexene-2,5-dione [CH3C(O)CH=CHC(O)CH3] and other unsaturated 1,4-dicarbonyls are formed from the atmospheric photooxidations of aromatic hydrocarbons. We have reinvestigated the formation of methylglyoxal from the gas-phase reaction of OH radicals with 3-hexene-2,5-dione in the presence of NO at room temperature and atmospheric pressure of air using in situ Fourier transform infrared spectroscopy. No evidence for the formation of methylglyoxal was obtained, with the IR spectra showing that methylglyoxal is, at most, a minor reaction product with a molar formation yield of <10% (and more likely <1%). This confirms our earlier study (Tuazon et al. Environ. Sci. Technol. 1985, 19, 265) and suggests that the CH3C(O)CH(OH)CHO and CH3C(O)CH(OH)CH(ONO2)C(O)CH3 observed by Bethel et al. (Environ. Sci. Technol. 2001, 35, 4477) are the major first-generation reaction products.  相似文献   

16.
Hydroxyaldehyde products of the OH radical-initiated reactions (in the presence of NO) of two volatile vegetative emissions, Z-3-hexen-1-ol and 2-methyl-3-buten-2-ol, were examined to assess the qualitative and quantitative potential of two analysis techniques (1) sampling by Solid-Phase MicroExtraction (SPME) with on-fiber derivatization followed by gas chromatographic analyses and (2) in situ analysis by negative ion mode atmospheric pressure ionization mass spectrometry (API-MS). The compounds were chosen because reaction mechanisms predict hydroxyaldehyde products, and reliable coproduct yield data are available. The API-MS analyses showed product ion peaks attributed to the NO2- adducts of 3-hydroxypropanal and dihydroxynitrates from Z-3-hexen-1-ol, and a formation yield of 3-hydroxypropanal of 44% was derived. Product ion peaks attributed to NO2- adducts of glycolaldehyde [HOCH2CHO], 2-hydroxy-2-methylpropanal [(CH3)2C(OH)CHO], and dihydroxynitrates were observed by API-MS from 2-methyl-3-buten-2-ol, and a formation yield of 2-hydroxy-2-methylpropanal of 16% was obtained. In experiments with SPME sampling, the formation yields of hydroxycarbonyls measured as their oxime derivatives were as follows: from Z-3-hexen-1-ol, propanal, 56 +/- 8%; 3-hydroxypropanal, 101 +/- 24%; and from 2-methyl-3-buten-2-ol, 2-hydroxy-2-methylpropanal, 31 +/- 4%. Both the API-MS and SPME analyses provided product information, and hydroxycarbonyl yields from the SPME data are in reasonable agreement with previously measured formation yields of coproducts.  相似文献   

17.
A bimolecular rate constant, kOH+alpha-terpineol, of (1.9 +/- 0.5) x 10(-10) cm3 molecule(-1) s(-1) was measured using gas chromatography/mass spectrometry and the relative rate technique for the reaction of the hydroxyl radical (OH) with alpha-terpineol (1-methyl-4-isopropyl-1-cyclohexen-8-ol) at (297 +/- 3) K and 1 atm total pressure. Additionally, a bimolecular rate constant, kO3+alpha-terpineol, of (3.0 +/- 0.2) x 10(-16) cm3 molecule(-1) s(-1) was measured by monitoring the first order decrease in ozone concentration as a function of excess alpha-terpineol. To better understand alpha-terpineol's gas-phase transformation in the indoor environment, the products of the alpha-terpineol + OH and alpha-terpineol + 03 reactions were also investigated. The positively identified alpha-terpineol/OH reaction products were acetone, ethanedial (glyoxal, HC(=O)C(=O)H), and 2-oxopropanal (methyl glyoxal, CH3C(=O)C(=O)H). The positively identified alpha-terpineol/O3 reaction product was 2-oxopropanal (methyl glyoxal, CH3C(=O)C(=O)H). The use of derivatizing agents O-(2,3,4,5,6-pentalfluorobenzyl)hydroxylamine (PFBHA) and N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) clearly indicated that several other reaction products were formed. The elucidation of these other reaction products was facilitated by mass spectrometry of the derivatized reaction products coupled with plausible alpha-terpineol/OH and alpha-terpineol/O3 reaction mechanisms based on previously published volatile organic compound/ OH and volatile organic compound/O3 gas-phase reaction mechanisms.  相似文献   

18.
The photocatalytic degradation of a series of (CH3)nNH(4-n)+ (0 < or = n < or = 4) was systematically studied in the UV-illuminated TiO2 aqueous suspensions at pH ranges of 3-11. By investigating the pH-dependent kinetics and analyzing intermediates and products, we elucidated the mechanistic pathways and the role of OH radicals in the photocatalytic oxidation. The deprotonated neutral species more rapidly degraded than their protonated counterparts for these homologous compounds because the OH radicals favorably reacted with the lone-pair electron on the nitrogen atom. Therefore, the photocatalytic degradation was highly enhanced at alkaline solutions for all substances except (CH3)4N+. The H-atom abstraction (from (CH3)4N+) by OH radicals initiated successive demethylation processes to generate tri-, di-, and monomethylammonium/amine as an intermediate and NH3/NH4+ as a final product. On the other hand, the OH-addition to the N-atom with the lone-pair electron led to NO2-/NO3- whose production was highly favored at alkaline conditions. The photocatalytic degradation rates of (CH3)4N+ were comparable at both acidic and alkaline conditions, which could not be explained by a simple electrostatic surface charge model. By using OH-scavenging tert-butyl alcohol as a diagnostic probe into the mechanism, it is suggested that the photocatalytic oxidation of (CH3)4N+ at acidic conditions proceeds through free OH radicals in the solution bulk, not on the surface of TiO2.  相似文献   

19.
Fluorotelomer alcohol biodegradation yields poly- and perfluorinated acids   总被引:2,自引:0,他引:2  
The widespread detection of environmentally persistent perfluorinated acids (PFCAs) such as perfluorooctanoic acid (PFOA) and its longer chained homologues (C9>C15) in biota has instigated a need to identify potential sources. It has recently been suggested that fluorinated telomer alcohols (FTOHs) are probable precursor compounds that may undergo transformation reactions in the environment leading to the formation of these potentially toxic and bioaccumulative PFCAs. This study examined the aerobic biodegradation of the 8:2 telomer alcohol (8:2 FTOH, CF3(CF2)7CH2CH2OH) using a mixed microbial system. The initial measured half-life of the 8:2 FTOH was approximately 0.2 days mg(-1) of initial biomass protein. The degradation of the telomer alcohol was monitored using a gas chromatograph equipped with an electron capture detector (GC/ECD). Volatile metabolites were identified using gas chromatography/ mass spectrometry (GC/MS), and nonvolatile metabolites were identified and quantified using liquid chromatography/ tandem mass spectrometry (LC/MS/MS). Telomer acids (CF3(CF2)7CH2COOH; CF3(CF2)6CFCHCOOH) and PFOA were identified as metabolites during the degradation, the unsaturated telomer acid being the predominant metabolite measured. The overall mechanism involves the oxidation of the 8:2 FTOH to the telomer acid via the transient telomer aldehyde. The telomer acid via a beta-oxidation mechanism was furthertransformed, leading to the unsaturated acid and ultimately producing the highly stable PFOA. Telomer alcohols were demonstrated to be potential sources of PFCAs as a consequence of biotic degradation. Biological transformation may be a major degradation pathway for fluorinated telomer alcohols in aquatic systems.  相似文献   

20.
桦木硫酸盐木素的分离及结构分析   总被引:5,自引:0,他引:5  
用硫酸沉淀桦木硫酸盐制浆黑液中的木素,并对木素进行提纯及结构分析,同时还分析了原黑液及分离木素后上清液的各项指标。结果发现,黑液经分离木素后,CODcr及色度大大下降,分离的木素纯度为9083%。分离出的桦木硫酸盐木素中以紫丁香基单元为主,也含有一定数量的对羟苯基单元和愈创木基单元。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号