首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
1. Using positron emission tomography and measurement of regional cerebral blood flow (rCBF) as an index of cerebral activity we investigated the central processing of motor preparation in 13 healthy volunteers. 2. We used a motor reaction time paradigm with visual cues as preparatory and response signals. A preparatory stimulus (PS) provided either full, partial, or no information regarding two variables of a forthcoming right finger movement: finger type (index or little finger) and movement direction (abduction or elevation). After a variable delay period, a response stimulus (RS) prompted the movement. A condition was also tested in which the subject could freely select any of the four possible movements during the preparation period ("free" condition). The timing of events was designed to emphasize the motor preparation phase over the motor execution component during the scanning time of 1 min. 3. Distinct preparatory processes, which depended on the information contained in the PS, were demonstrated by significant differences in reaction time between conditions. The reaction time was shorter in the "full" and free conditions, intermediate in the two partial information conditions ("finger" and "direction"), and longer when no preparatory information was available ("none" condition). Conversely, movement time and movement amplitude were similar between conditions, establishing the constancy of the motor executive output. 4. In comparison with a "rest" condition, which had matched visual inputs, the different conditions of motor preparation were associated with increased rCBF in a common set of cerebral regions: the contralateral frontal cortex (sensorimotor, premotor, cingulate, and supplementary motor cortex), the contralateral parietal association cortex (anterior and posterior regions), the ipsilateral cerebellum, the contralateral basal ganglia, and the thalamus. This observation substantiates the participation of those cerebral structures in the preparation for movement. Furthermore, the similarity of the activated areas among the different conditions compared with the rest condition suggests a single anatomic substrate for motor preparation, independent of the movement information context. 5. Differing amounts of movement information contained in the PS affected rCBF changes in some cerebral regions. In particular, the rCBF in the anterior parietal cortex (Brodmann's area 40) was significantly larger in each of the full, finger, and direction conditions, individually, compared with the none condition. This observation supports the hypothesis that the anterior parietal association cortex plays a major role in the use of visual instructions contained in the PS for partial or complete preparation to perform a motor act. On the other hand, the posterior parietal association cortex (Brodmann's area 7) was more activated in the finger, direction, and none conditions than in the full condition. This increased activity with restricted advance information suggests that the posterior region of the parietal cortex is concerned with correct movement selection on the basis of enhanced spatial attention to the RS. 6. In contrast with the parietal cortex, the secondary motor areas (i.e, premotor cortex, cingulate cortex, and supplementary motor area) showed similar activity regardless of the degree of preparation allowed by the advance visual information. Thus the parietal cortex may play a more crucial role than the secondary motor areas in integrating visual information in preparation for movement. 7. The effect on brain activity of the internal (self-generated) versus the external (cued) mode of movement selection was assessed by comparing the free and full conditions, the preparatory component being matched in the two conditions. The anterior part of the supplementary motor area was the main area preferentially involved in the internal selection of movement, independently of motor preparation processes.  相似文献   

2.
The purpose of this study was to investigate the cortical motor areas activated in relation to unilateral complex hand movements of either hand, and the motor area related to motor skill learning. Regional cerebral blood flow (rCBF) was measured in eight right-handed healthy male volunteers using positron emission tomography during a two-ball-rotation task using the right hand, the same task using the left hand and two control tasks. In the two-ball-rotation tasks, subjects were required to rotate the same two iron balls either with the right or left hand. In the control task, they were required to hold two balls in each hand without movement. The primary motor area, premotor area and cerebellum were activated bilaterally with each unilateral hand movement. In contrast, the supplementary motor area proper was activated only by contralateral hand movements. In addition, we found a positive correlation between the rCBF to the premotor area and the degree of improvement in skill during motor task training. The results indicate that complex hand movements are organized bilaterally in the primary motor areas, premotor areas and cerebellum, that functional asymmetry in the motor cortices is not evident during complex finger movements, and that the premotor area may play an important role in motor skill learning.  相似文献   

3.
The functional anatomy of reaching and grasping simple objects was determined in nine healthy subjects with positron emission tomography imaging of regional cerebral blood flow (rCBF). In a prehension (grasping) task, subjects reached and grasped illuminated cylindrical objects with their right hand. In a pointing task, subjects reached and pointed over the same targets. In a control condition subjects looked at the targets. Both movement tasks increased activity in a distributed set of cortical and subcortical sites: contralateral motor, premotor, ventral supplementary motor area (SMA), cingulate, superior parietal, and dorsal occipital cortex. Cortical areas including cuneate and dorsal occipital cortex were more extensively activated than ventral occipital or temporal pathways. The left parietal operculum (putative SII) was recruited during grasping but not pointing. Blood flow changes were individually localized with respect to local cortical anatomy using sulcal landmarks. Consistent anatomic landmarks from MRI scans could be identified to locate sensorimotor, ventral SMA, and SII blood flow increases. The time required to complete individual movements and the amount of movement made during imaging correlated positively with the magnitude of rCBF increases during grasping in the contralateral inferior sensorimotor, cingulate, and ipsilateral inferior temporal cortex, and bilateral anterior cerebellum. This functional-anatomic study defines a cortical system for "pragmatic' manipulation of simple neutral objects.  相似文献   

4.
Stereotactic posteroventral pallidotomy can improve motor performance in Parkinson's disease. Interruption of inhibitory pallidal projections to ventrolateral thalamus, components of a cortical-basal ganglia motor loop allows for this clinical benefit. We hypothesized that pallidotomy would lead to increased movement related activity in motor cortical areas receiving projections from ventrolateral thalamus. This was tested in 6 Parkinson's disease patients who underwent stereotactic posteroventral pallidotomy. Each patient was imaged with positron emission tomography (PET) measures of regional cerebral blood flow (rCBF) during performance of a simple prehension task and at rest. Scans were acquired before and 17 weeks after surgery. After pallidotomy, movement-related changes of rCBF increased significantly in both the supplementary motor area (SMA) and premotor cortex but not in primary motor cortex. The results demonstrate the importance of pallidothalamic circuitry for regulating volitional movements and confirm that disruption of inhibitory input to the ventrolateral thalamus can augment movement-related activity in motor association areas.  相似文献   

5.
Intracranial lesions may compromise structures critical for motor performance, and mapping of the cortex, especially of the motor hand area, is important to reduce postoperative morbidity. We investigated nine patients with parietal lobe tumours and used functional MRI sensitized to changes in blood oxygenation to define the different motor areas, especially the primary sensorimotor cortex, in relation to the localization of the tumour. Activation was determined by pixel-by-pixel correlation of the signal intensity time course with a reference waveform equivalent to the stimulus protocol. All subjects showed significant activation of the primary sensorimotor cortex while performing a finger opposition task with the affected and unaffected side. In five patients the finger opposition task additionally activated the ipsilateral sensorimotor cortex and the supplementary motor area (SMA). Extension and flexion of the foot, additionally performed in two patients, also activated the sensorimotor cortex, in one case within the perifocal oedema of the tumour. Tumour localization near the central sulcus induced displacement of the sensorimotor cortex as compared to the unaffected side in all patients with a relevant mass effect. The results of our study demonstrate that functional MRI at 1.5 T with a clinically used tomograph can reproducibly localize critical brain regions in patients with intracranial lesions.  相似文献   

6.
Positron emission tomography was used to identify neural systems involved in the acquisition and expression of sequential movements produced by different effectors. Subjects were tested on the serial reaction time task under implicit learning conditions. In the initial acquisition phase, subjects responded to the stimuli with keypresses using the four fingers of the right hand. During this phase, the stimuli followed a fixed sequence for one group of subjects (group A) and were randomly selected for another group (group B). In the transfer phase, arm movements were used to press keys on a substantially larger keyboard, and for both groups, the stimuli followed the sequence. Behavioral indices provided clear evidence of learning during the acquisition phase for group A and transfer when switched to the large keyboard. Sequence acquisition was associated with learning-related increases in regional cerebral blood flow (rCBF) in a network of areas in the contralateral left hemisphere, including sensorimotor cortex, supplementary motor area, and rostral inferior parietal cortex. After transfer, activity in inferior parietal cortex remained high, suggesting that this area had encoded the sequence at an abstract level independent of the particular effectors used to perform the task. In contrast, activity in sensorimotor cortex shifted to a more dorsal locus, consistent with motor cortex somatotopy. Thus, activity here was effector-specific. An increase in rCBF was also observed in the cingulate motor area at transfer, suggesting a role linking the abstract sequential representations with the task-relevant effector system. These results highlight a network of areas involved in sequence encoding and retrieval.  相似文献   

7.
Fine-scale somatotopic encoding in brain areas devoted to sensorimotor processing has recently been questioned by functional neuroimaging studies which suggested its absence within the hand area of the human primary motor cortex. We re-examined this issue by addressing somatotopy both in terms of functional segregation and of cortical response preference using oxygenation-sensitive magnetic resonance imaging at high spatial resolution. In a first step, spatial representations of self-paced isolated finger movements were mapped by using motor rest as a control state. A subsequent experimental design studied the predominance of individual finger movements by using contrasting finger movements as the control task. While the first approach confirmed previous reports of extensive overlap in spatial representations, the second approach revealed foci of differential activation which displayed an orderly mediolateral progression in accordance with the classical cortical motor homunculus. We conclude that somatotopy within the hand area of the primary motor cortex does not present as qualitative functional segregation but as quantitative predominance of certain movement or digit representation embedded in an overall joint hand area.  相似文献   

8.
Previous functional imaging studies have demonstrated a number of discrete brain structures that increase activity with noxious stimulation. Of the commonly identified central structures, only the anterior cingulate cortex shows a consistent response during the experience of pain. The insula and thalamus demonstrate reasonable consistency while all other regions, including the lentiform nucleus, somatosensory cortex and prefrontal cortex, are active in no more than half the current studies. The reason for such discrepancy is likely to be due in part to methodological variability and in part to individual variability. One aspect of the methodology which is likely to contribute is the stimulus intensity. Studies vary considerably regarding the intensity of the noxious and non-noxious stimuli delivered. This is likely to produce varying activation of central structures coding for the intensity, affective and cognitive components of pain. Using twelve healthy volunteers and positron emission tomography (PET), the regional cerebral blood flow (rCBF) responses to four intensities of stimulation were recorded. The stimulation was delivered by a CO2 laser and was described subjectively as either warm (not painful), pain threshold just painful), mildly painful or moderately painful. The following group subtractions were made to examine the changing cerebral responses as the stimulus intensity increased: (1) just painful - warm; (2) mild pain - warm; and (3) moderate pain - warm. In addition, rCBF changes were correlated with the subjective stimulus ratings. The results for comparison '1' indicated activity in the contralateral prefrontal (area 10/46/44), bilateral inferior parietal (area 40) and ipsilateral premotor cortices (area 6), possibly reflecting initial orientation and plans for movement. The latter comparisons and correlation analysis indicated a wide range of active regions including bilateral prefrontal, inferior parietal and premotor cortices and thalamic responses, contralateral hippocampus, insula and primary somatosensory cortex and ipsilateral perigenual cingulate cortex (area 24) and medial frontal cortex (area 32). Decreased rCBF was observed in the amygdala region. These responses were interpreted with respect to their contribution to the multidimensional aspects of pain including fear avoidance, affect, sensation and motivation or motor initiation. It is suggested that future studies examine the precise roles of each particular region during the central processing of pain.  相似文献   

9.
The supplementary motor area (SMA) was reversibly inactivated by muscimol microinfusion in two monkeys while they were performing two motor tasks: (1) a delayed conditional bimanual drawer pulling and grasping sequence which was initiated on a self-paced basis; (2) a unimanual reach and grasp task (modified Kluver board task). Unilateral or bilateral inactivation of the SMA induced a prominent deficit in trial initiation of bimanual sequential movements, affecting the hand contralateral to the inactivated side or both hands, respectively. The deficit was a long lasting (10-15 min or more) inability of the monkey to place its hand (s) in the ready position on start touch-sensitive pads, a condition required to initiate the drawer task. However, if after such a deficit period, the experimenter put his hand on the start touch-sensitive pad to initiate the trial, then the monkey executed the drawer task without obvious motor deficit. SMA inactivation did not affect unimanual reaching and grasping movements in the board task. In contrast to the SMA, inactivation of other motor areas (primary, premotor dorsal, anterior intraparietal area) did not affect the initiation of movement sequences in the drawer task. These data thus indicate that the SMA plays a crucial and specific role in initiation of self-paced movement sequences. However, SMA inactivation did not prevent the monkeys to perform coordinated movements of the two forelimbs and hands, indicating that SMA is not necessary for bimanual coordination.  相似文献   

10.
Two patients presented with a tumor involving mainly the supplementary motor area or the premotor cortex. Shortly after tumor resection, each developed transient impairment of voluntary movements. An electromyogram, with the skin electrodes placed over the muscles of the upper arms and forearms, demonstrated aberrant ipsilateral, contralateral or bilateral muscle activation during unilateral motor tasks in both patients. The bilateral activation was more prominent in the patient who had an intact dominant hemisphere. The present study suggests for the first time the importance of non-primary motor areas of the human brain in activating the proper set of muscles on the proper side of the body.  相似文献   

11.
Activity in the human supplementary motor area (SMA), primary motor cortex (M1), and the draining vein of the motor cortex during a visually triggered finger opposition task was measured by functional magnetic resonance imaging with a repetition time of 1 s. Sequential hemodynamic activation in these areas was revealed by cross-correlating a signal sequence in M1 directly with signal sequences from SMA and the draining vein, and applying polynomial fitting with the aid of Akaike's information criterion. We succeeded in detecting a time delay of approximately 0.5 s between the activations of SMA and M1, and a delay of nearly 1.3 s between the activations of M1 and its draining vein. The new combination of fMRI and data analysis techniques has attained a time resolution comparable to those in preceding studies that used shorter fMRI repetition times of 100-200 ms.  相似文献   

12.
We applied functional magnetic resonance imaging (FMRI) to map the somatotopic organization of the primary motor cortex using voluntary movements of the hand, arm, and foot. Eight right-handed healthy subjects performed self-paced, repetitive, flexion/extension movements of the limbs while undergoing echo-planar imaging. Four subjects performed movements of the right fingers and toes, while the remaining subjects performed movements of the right fingers and elbow joint. There was statistically significant functional activity in the left primary motor cortex in all subjects. The pattern of functional activity followed a topographic representation: finger movements resulted in signal intensity changes over the convexity of the left motor cortex, whereas toe movements produced changes either at the interhemispheric fissure or on the dorsolateral surface adjacent to the interhemispheric fissure. Elbow movements overlapped the more medial signal intensity changes observed with finger movements. Functionally active regions were confined to the cortical ribbon and followed the gyral anatomy closely. These findings indicate that FMRI is capable of generating somatotopic maps of the primary motor cortex in individual subjects.  相似文献   

13.
Neurosurgical and positron emission tomography (PET) human studies and animal electrophysiological studies show that part of the anterior cingulate cortex (ACC) is nociceptive. Since the contribution of the ACC to pain processing is poorly understood, this study employed PET and magnetic resonance (MR) image co-registration in grouped and individual cases to locate regions of altered relative regional cerebral blood flow (rCBF). Seven right-handed, neurologically intact males were subjects; each received neuropsychological and pain threshold testing. Subjects were scanned during infusion of H2[15O]: four randomized scans during innocuous heat stimulation to the back of the left hand and four scans during noxious but bearable heat to the same place. The averaged rCBF values during innocuous stimuli were subtracted from those during noxious stimuli and statistical parametric maps (SPMs) for the group were computed to identify regions of altered relative rCBF. Finally, single-subject PET images of elevated and reduced rCBF were co-registered with MR images and projected onto reconstructions of the medial surface of the hemisphere. The SPM analysis of the group showed one site with elevated rCBF in the midcingulate cortex and one in the perigenual cortex predominantly contralateral to the side of stimulation. There were bilateral sites of reduced rCBF in the cingulofrontal transitional cortex and in the posterior cingulate cortex (PCC). Co-registered PET and MR images for individuals showed that only one case had a single, large region of elevated rCBF, while the others had a number of smaller regions. Six cases had at least one significant elevation of rCBF in the right hemisphere that primarily involved area 24b'; five of these cases also had an elevation in area 32', while the seventh case had elevated rCBF in these areas in the left hemisphere. The rostral site of elevated rCBF in the group was at the border of areas 24/24' and areas 32/32' although most cases had a site of elevation more rostral in the perigenual cingulate cortex. The ACC site of reduced rCBF was in areas 8 and 32 and that in the PCC included much of areas 29/30 in the callosal sulcus, areas 23b and 31 on the cingulate gyral surface and parietal area 7m. The localization of relative rCBF changes suggests different roles for the cingulate cortex in pain processing: (i) elevated rCBF in area 24' may be involved in response selection like nocifensive reflex inhibition; (ii) activation of the perigenual cortex may participate in affective responses to noxious stimuli like suffering associated with pain; and (iii) reduced rCBF in areas 8 and 32 may enhance pain perception in the perigenual cortex, while that in the PCC may disengage visually guided processes.  相似文献   

14.
BACKGROUND: Experimentally induced depressed mood is a suggested model for retarded depression. We describe the neural response associated with induced mood and the locus of the interaction between systems mediating mood and cognitive function. METHODS: Normal subjects performed a verbal fluency task during induced elated and depressed mood states. Regional cerebral blood flow (rCBF) was measured as an index of neural activity using Positron Emission Tomography (PET). RESULTS: In both elated and depressed mood state rCBF was increased in lateral orbitofrontal cortex, rCBF was also increased in the midbrain in elated mood. In the depressed condition rCBF was decreased in rostral medial prefrontal cortex. Verbal fluency produced an expected increase of rCBF in left dorsolateral prefrontal, inferior frontal and premotor cortex, anterior cingulate and insula cortex bilaterally, the left supramarginal gyrus posteriorly and the thalamus. Activation in the verbal fluency task was attenuated throughout the left prefrontal, premotor and cingulate cortex and thalamus in both elated and depressed mood conditions. An attenuation of anterior cingulate activation was specific to depressed mood. CONCLUSIONS: Alteration of mood is associated with activation of orbitofrontal cortex which may be critical to the experience of emotion. The mood induced modulation of verbal fluency induced activations is consistent with resting state findings of decreased function in these regions in depressed patients. The present data suggest that resting state rCBF profile may represent the modulation of spontaneous activity in this network by a core system that is dysfunctional in depression.  相似文献   

15.
OBJECTIVES: Slow potentials appearing during simple repetitive acral limb movement were investigated. Twenty-six patients suffering from drug resistant partial epilepsies and explored with implanted intracerebral electrodes were examined using two protocols. METHODS: In 18 patients, readiness potential (RP), in 13 patients contingent negative variation (CNV), and in 7 patients both protocols, were tested. The recordings from leads with evident pathological EEG activity were excluded from evaluation. The results concerning the slow potentials preceding the movements in RP and CNV protocols have already been published. RESULTS: The movement-accompanying slow potentials (MASP) were polyphasic or monophasic, started before or during the movement. In the primary motor cortex they followed the pre-movement potentials depending on the protocol: in the RP paradigm they were present only contralateral to the movement, but were bilateral in the CNV protocol. In other areas they either followed the potentials preceding the movement, in some cases with opposite polarity, or they occurred alone. MASP was recorded in motor and supplementary motor, premotor and prefrontal, midtemporal, somatosensory, superior parietal and cingular cortices. The cingular cortex was heavily involved in the self-paced movements but rarely in the cued movements. CONCLUSION: The major involvement of the cingular gyrus contrasted with the absence of slow potentials in temporal limbic structures. MASP is evidently a heterogenic phenomenon. Its genesis could be involved in a spread of information through the relevant structures.  相似文献   

16.
OBJECTIVE: To study the mechanisms underlying recovery from middle cerebral artery infarction in 7 patients with an average age of 53 years who showed marked recovery of hand function after acute severe hemiparesis caused by their first-ever stroke. INTERVENTIONS: Assessment of motor functions, transcranial magnetic stimulation, somatosensory evoked potentials, magnetic resonance imaging, and positron emission tomographic measurements of regional cerebral blood flow during finger movement activity. RESULTS: The infarctions involved the cerebral convexity along the central sulcus from the Sylvian fissure up to the hand area but spared the caudate nucleus, thalamus, middle and posterior portions of the internal capsule, and the dorsal part of the precentral gyrus in each patient. After recovery (and increase in motor function score of 57%, P<.001), the motor evoked potentials in the hand and leg muscles contralateral to the infarctions were normal, whereas the somatosensory evoked potentials from the contralateral median nerve were reduced. During fractionated finger movements of the recovered hand, regional cerebral blood flow increases occurred bilaterally in the dorsolateral and medial premotor areas but not in the sensorimotor cortex of either hemisphere. CONCLUSIONS: Motor recovery after cortical infarction in the middle cerebral artery territory appears to rely on activation of premotor cortical areas of both cerebral hemispheres. Thereby, short-term output from motor cortex is likely to be initiated.  相似文献   

17.
We have taken advantage of the temporal resolution afforded by functional magnetic resonance imaging (fMRI) to investigate the role played by medial wall areas in humans during working memory tasks. We demarcated the medial motor areas activated during simple manual movement, namely the supplementary motor area (SMA) and the cingulate motor area (CMA), and those activated during visually guided saccadic eye movements, namely the supplementary eye field (SEF). We determined the location of sustained activity over working memory delays in the medial wall in relation to these functional landmarks during both spatial and face working memory tasks. We identified two distinct areas, namely the pre-SMA and the caudal part of the anterior cingulate cortex (caudal-AC), that showed similar sustained activity during both spatial and face working memory delays. These areas were distinct from and anterior to the SMA, CMA, and SEF. Both the pre-SMA and caudal-AC activation were identified by a contrast between sustained activity during working memory delays as compared with sustained activity during control delays in which subjects were waiting for a cue to make a simple manual motor response. Thus, the present findings suggest that sustained activity during working memory delays in both the pre-SMA and caudal-AC does not reflect simple motor preparation but rather a state of preparedness for selecting a motor response based on the information held on-line.  相似文献   

18.
The Bereitschaftspotential (BP) was recorded at 56 scalp positions when 17 healthy subjects performed brisk extensions of the right index finger. Aim of the study was to contribute to our understanding of the physiology underlying the BP and, in particular, to specify the situation at BP onset. For this purpose, the spatial pattern of the BP was analyzed in short time intervals (35 and/or 70 ms) starting 2.51 s before movement onset. For each time segment a spherical model of the BP was calculated by using spline interpolation. Then the spatial distribution of the electric potential at the scalp surface was transformed into a spatial distribution of current source densities (CSD map). Onset times of the BP and onset times of initial CSD-activity ranged between 2.23 and 1.81 s before movement onset. We selected a time window between 1.6 and 1.5 s before movement onset in order to analyze the spatial CSD pattern in each subject. In 10 subjects there was a significant current sink in the scalp area located over medial-wall motor areas (pre-SMA, SMA proper and anterior cingulate cortex: electrode positions C1, C2, FCz, Cz) in the absence of a significant current sink over the primary motor cortex (MI: electrode positions C3, CP3, and CP5). In three subjects significant current sinks were present at both sites and in another three subjects a current sink only over the lateral motor cortex was observed. In one subject no significant current sinks were measured. It is concluded that there is a large group of subjects (13/17) in whom BP at onset is associated with a current sink over medial-wall motor areas. At a later time interval (0.6 to 0.5 s before movement onset), significant current sinks were found in 13 subjects in medial and in 10 subjects in lateral recordings. These data were considered to be consistent with the hypothesis that, at least in a majority of subjects, medial-wall motor areas are activated earlier than lateral motor areas when organizing the initiation of a simple self-paced movement. Surface-recordings of the EEG do not allow further specification of cortical areas, which contribute to the current sinks. But in context with the current literature of the electrophysiology of nonhuman primates and of brain imaging in humans it is suggested that SMA and anterior cingulate cortex contribute to the current sink, the fronto-central midline, and that the primary motor cortex (MI) contributes to the current sink in the scalp area, which is located above MI and closely posterior to it.  相似文献   

19.
Two motor areas are known to exist in the medial frontal lobe of the cerebral cortex of primates, the supplementary motor area (SMA) and the presupplementary motor area (pre-SMA). We report here on an aspect of cellular activity that characterizes the pre-SMA. Monkeys were trained to perform three different movements sequentially in a temporal order. The correct order was planned on the basis of visual information before its execution. A group of pre-SMA cells (n = 64, 25%) were active during a process when monkeys were required to discard a current motor plan and develop a plan appropriate for the next orderly movements. Such activity was not common in the SMA and not found in the primary motor cortex. Our data suggest a role of pre-SMA cells in updating motor plans for subsequent temporally ordered movements.  相似文献   

20.
Functional brain imaging studies have indicated that several cortical and subcortical areas active during actual motor performance are also active during imagination or mental rehearsal of movements. Recent evidence shows that the primary motor cortex may also be involved in motor imagery. Using whole-scalp magnetoencephalography, we monitored spontaneous and evoked activity of the somatomotor cortex after right median nerve stimuli in seven healthy right-handed subjects while they kinesthetically imagined or actually executed continuous finger movements. Manipulatory finger movements abolished the poststimulus 20-Hz activity of the motor cortex and markedly affected the somatosensory evoked response. Imagination of manipulatory finger movements attenuated the 20-Hz activity by 27% with respect to the rest level but had no effect on the somatosensory response. Slight constant stretching of the fingers suppressed the 20-Hz activity less than motor imagery. The smallest possible, kinesthetically just perceivable finger movements resulted in slightly stronger attenuation of 20-Hz activity than motor imagery did. The effects were observed in both hemispheres but predominantly contralateral to the performing hand. The attempt to execute manipulatory finger movements under experimentally induced ischemia causing paralysis of the hand also strongly suppressed 20-Hz activity but did not affect the somatosensory evoked response. The results indicate that the primary motor cortex is involved in motor imagery. Both imaginative and executive motor tasks appear to utilize the cortical circuitry generating the somatomotor 20-Hz signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号