首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Streptococcus pneumoniae is the major cause of bacterial pneumonia, and it is also responsible for otitis media and meningitis in children. Apart from the capsule, the virulence factors of this pathogen are not completely understood. Recent technical advances in the field of bacterial pathogenesis (in vivo expression technology and signature-tagged mutagenesis [STM]) have allowed a large-scale identification of virulence genes. We have adapted to S. pneumoniae the STM technique, originally used for the discovery of Salmonella genes involved in pathogenicity. A library of pneumococcal chromosomal fragments (400 to 600 bp) was constructed in a suicide plasmid vector carrying unique DNA sequence tags and a chloramphenicol resistance marker. The recent clinical isolate G54 was transformed with this library. Chloramphenicol-resistant mutants were obtained by homologous recombination, resulting in genes inactivated by insertion of the suicide vector carrying a unique tag. In a mouse pneumonia model, 1.250 candidate clones were screened; 200 of these were not recovered from the lungs were therefore considered virulence-attenuated mutants. The regions flanking the chloramphenicol gene of the attenuated mutants were amplified by inverse PCR and sequenced. The sequence analysis showed that the 200 mutants had insertions in 126 different genes that could be grouped in six classes: (i) known pneumococcal virulence genes; (ii) genes involved in metabolic pathways; (iii) genes encoding proteases; (iv) genes coding for ATP binding cassette transporters; (v) genes encoding proteins involved in DNA recombination/repair; and (vi) DNA sequences that showed similarity to hypothetical genes with unknown function. To evaluate the virulence attenuation for each mutant, all 126 clones were individually analyzed in a mouse septicemia model. Not all mutants selected in the pneumonia model were confirmed in septicemia, thus indicating the existence of virulence factors specific for pneumonia.  相似文献   

2.
A live oral recombinant Salmonella vaccine strain expressing pneumococcal surface protein A (PspA) was developed. The strain was attenuated with Deltacya Deltacrp mutations. Stable expression of PspA was achieved by the use of the balanced-lethal vector-host system, which employs an asd deletion in the host chromosome to impose an obligate requirement for diaminopimelic acid. The chromosomal Deltaasd mutation was complemented by a plasmid vector possessing the asd+ gene. A portion of the pspA gene from Streptococcus pneumoniae Rx1 was cloned onto a multicopy Asd+ vector. After oral immunization, the recombinant Salmonella-PspA vaccine strain colonized the Peyer's patches, spleens, and livers of BALB/cByJ and CBA/N mice and stimulated humoral and mucosal antibody responses. Oral immunization of outbred New Zealand White rabbits with the recombinant Salmonella strain induced significant anti-PspA immunoglobulin G titers in serum and vaginal secretions. Polyclonal sera from orally immunized mice detected PspA on the S. pneumoniae cell surface as revealed by immunofluorescence. Oral immunization of BALB/cJ mice with the PspA-producing Salmonella strain elicited antibody to PspA and resistance to challenge by the mouse-virulent human clinical isolate S. pneumoniae WU2. Immune sera from orally immunized mice conferred passive protection against otherwise lethal intraperitoneal or intravascular challenge with strain WU2.  相似文献   

3.
The intron-encoded endonuclease I-CeuI from Chlamydomonas eugametos was shown to cleave the circular chromosomes of all Clostridium perfringens strains examined at single sites in the rRNA operons, thereby generating ten fragments suitable for the rapid mapping of virulence genes by pulsed-field gel electrophoresis (PFGE). This method easily distinguishes between plasmid and chromosomal localisations, as I-CeuI only cuts chromosomal DNA. Using this approach, the genes for three of the four typing toxins, beta, epsilon, and tau, in addition to the enterotoxin and lambda-toxin genes, were shown to be plasmid-borne. In a minority of strains, associated with food poisoning, where the enterotoxin toxin gene was located on the chromosome, genes for two of the minor toxins, theta and mu, were missing.  相似文献   

4.
Penicillin-resistant isolates of Streptococcus pneumoniae generally contain mosaic genes encoding the low-affinity penicillin-binding proteins (PBPs) PBP2x, PBP2b, and PBP1a. We now present evidence that PBP2a and PBP1b also appear to be low-affinity variants and are encoded by distinct alleles in beta-lactam-resistant transformants of S. pneumoniae obtained with chromosomal donor DNA from a Streptococcus mitis isolate. Different lineages of beta-lactam-resistant pneumococcal transformants were analyzed, and transformants with low-affinity variants of all high-molecular-mass PBPs, PBP2x, -2a, -2b, -1a, and -1b, were isolated. The MICs of benzyl-penicillin, oxacillin, and cefotaxime for these transformants were up to 40, 100, and 50 microg/ml, respectively, close to the MICs for the S. mitis donor strain. Recruitment of low-affinity PBPs was accompanied by a decrease in cross-linked muropeptides as revealed by high-performance liquid chromatography of muramidase-digested cell walls, but no qualitative changes in muropeptide chemistry were detected. The growth rates of all transformants were identical to that of the parental S. pneumoniae strain. The results stress the potential for the acquisition by S. pneumoniae of high-level beta-lactam resistance by interspecies gene transfer.  相似文献   

5.
We have mapped the chromosomal locations of three human nuclear genes for putative components of the apparatus of mitochondrial gene expression, using a combination of in situ hybridization and interspecies hybrid mapping. The genes RPMS12 (mitoribosomal protein S12, a conserved protein component of the mitoribosomal accuracy center), TUFM (mitochondrial elongation factor EF-Tu), and AFG3L1 (similar to the yeast genes Afg3 and Rca1 involved in the turnover of mistranslated or misfolded mtDNA-encoded polypeptides) were initially characterized by a combination of database sequence analysis, PCR, cloning, and DNA sequencing. RPMS12 maps to chromosome 19q13.1, close to the previously mapped gene for autosomal dominant hearing loss DFNA4. The TUFM gene is located on chromosome 16p11.2, with a putative pseudogene or variant (TUFML) located very close to the centromere of chromosome 17. AFG3L1 is located on chromosome 16q24, very close to the telomere. By virtue of their inferred functions in mitochondria, these genes should be regarded as candidates of disorders sharing features with mitochondrial disease syndromes, such as sensorineural deafness, diabetes, and retinopathy.  相似文献   

6.
We have created a resource for chromosome 22 consisting of 96 unique, well-characterized Fosmids. The Fosmid vector permits efficient cloning of DNA fragments averaging 40 kb in a single-copy vector based on the F factor of Escherichia coli. We have found that Fosmid clones from human chromosome 22 show remarkable stability and are useful for a wide variety of applications in genome analysis. These 96 clones have been localized by FISH, using high-resolution fluorescent banding and multicolor mapping techniques, and their position on the chromosome was correlated with their content of a number of common repeated sequence elements. We identified a subset of clones likely to contain genes by restriction analysis using the enzymes NotI, MluI, SacII, and BssHII. This collection of cytogenetically anchored clones, representing nearly 7% of the chromosome, is of immediate value for detecting chromosomal rearrangements, for use in gene isolation, and as a framework for physical mapping.  相似文献   

7.
Mini-plasmids, based on the N15 temperate bacteriophage replicon, are described. One of these, N15-203 linear 13.8 kb plasmid, has anomalously high copy number--more than 250 per one bacterial chromosome and the amount of plasmid DNA comprises about half of the total DNA of a cell. This property of N15-203 plasmid is realized only in the strain lysogenic for a N15 phage and is lost for the circular deletion versions of N15-203. The efficiency of transformation of E. coli C (N15) strain is essentially the same for N15-203 and pUC4K plasmids. Insertion of foreign DNA with a size up to 20 kb into BgIII cloning site of N15-203 plasmid does not decrease significantly efficiency of transformation calculated per number of DNA molecules and the total amount of plasmid DNA in a cell. N15-203 plasmid may be used as a vector for molecular cloning of relatively large DNA fragments, and in those biotechnology processes when productivity depends on a vector's copy number.  相似文献   

8.
We have studied etiological diagnosis of acute otitis media (AOM) by comparing a newly developed pneumococcal PCR for Streptococcus pneumoniae to bacterial culture with 180 middle ear fluid (MEF) samples of 125 children with 125 episodes of AOM. For pneumococcal PCR assay, DNA from MEF samples was extracted by phenol-chloroform. The outer primers used amplified a 348-bp region of the pneumolysin gene, and the inner primers amplified a 208-bp region. S. pneumoniae was cultured in 33 (18%) samples, and pneumolysin PCR was positive for 51 (28%) of 180 MEF samples. Only 2 of 21 PCR-positive, S. pneumoniae culture-negative samples were positive for other otitis pathogens. By combining MEF culture and PCR results, 54 (30%) of 180 MEF samples had evidence of pneumococcal etiology. In conclusion, pneumolysin PCR is a sensitive and specific new method to study pneumococcal involvement in MEF samples of children with AOM.  相似文献   

9.
The transformation-associated recombination (TAR) procedure allows rapid, site-directed cloning of specific human chromosomal regions as yeast artificial chromosomes (YACs). The procedure requires knowledge of only a single, relatively small genomic sequence that resides adjacent to the chromosomal region of interest. We applied this approach to the cloning of the neocentromere DNA of a marker chromosome that we have previously shown to have originated through the activation of a latent centromere at human chromosome 10q25. Using a unique 1.4-kb DNA fragment as a "hook" in TAR experiments, we achieved single-step isolation of the critical neocentromere DNA region as two stable, 110- and 80-kb circular YACs. For obtaining large quantities of highly purified DNA, these YACs were retrofitted with the yeast-bacteria-mammalian-cells shuttle vector BRV1, electroporated into Escherichia coli DH10B, and isolated as bacterial artificial chromosomes (BACs). Extensive characterization of these YACs and BACs by PCR and restriction analyses revealed that they are identical to the corresponding regions of the normal chromosome 10 and provided further support for the formation of the neocentromere within the marker chromosome through epigenetic activation.  相似文献   

10.
While transformation is a prominent tool for genetic analysis and genome manipulation in many organisms, transforming DNA has often been found to be unstable relative to established molecules. We determined the potential for transformation-associated mutations in a 360 kb yeast chromosome III composed primarily of unique DNA. Wild-type and rad52 Saccharomyces cerevisiae strains were transformed with either a homologous chromosome III or a diverged chromosome III from S. carlsbergensis. The host strain chromosome III had a conditional centromere allowing it to be lost on galactose medium so that recessive mutations in the transformed chromosome could be identified. Following transformation of a RAD+ strain with the homologous chromosome, there were frequent changes in the incoming chromosome, including large deletions and mutations that do not lead to detectable changes in chromosome size. Based on results with the diverged chromosome, interchromosomal recombinational interactions were the source of many of the changes. Even though rad52 exhibits elevated mitotic mutation rates, the percentage of transformed diverged chromosomes incapable of substituting for the resident chromosome was not increased in rad52 compared to the wild-type strain, indicating that the mutator phenotype does not extend to transforming chromosomal DNA. Based on these results and our previous observation that the incidence of large mutations is reduced during the cloning of mammalian DNA into a rad52 as compared to a RAD+ strain, a rad52 host is well-suited for cloning DNA segments in which gene function must be maintained.  相似文献   

11.
The bacterial species Leptospira interrogans (sensu stricto) has a complex genome containing two circular chromosomal replicons. Comparative analysis of the larger chromosome reveals a fluid genetic organization with many large rearrangements differentiating two closely related strains. In the present study new genes were identified by partial sequence analysis of randomly cloned fragments of L. interrogans DNA. These genes were localized in regions of the genome by nucleic acid hybridization with DNA fragments separated by pulsed-field gel electrophoresis. The resulting genetic maps provide improved resolution for each strain and provide evidence for additional chromosomal rearrangements. Insertion elements may be involved in recombination events, as several are near regions of the chromosome that have undergone rearrangement.  相似文献   

12.
Xylitol production from xylose was studied using recombinant Saccharomyces cerevisiae 2805 containing xylose reductase genes (XYL1) of Pichia stipitis at chromosomal delta-sequences. S. cerevisiae 2805-39-40, which contains about 40 copies of the XYL1 gene on the chromosome, was obtained by a sequential transformation using a dominant selection marker neor and an auxotrophic marker URA3. The multiple XYL1 genes were stably maintained on the chromosome even after 21 and 10 days in the non-selective sequential batch and chemostat cultures, respectively, whereas S. cerevisiae 2805:pVTXR, which harbors the episomal plasmid pVTXR having the XYL1 gene, showed mitotic plasmid instability and more than 95% of the cells lost the plasmid under the same culture conditions. In the first batch (3 days) of the sequential batch culture, volumetric xylitol productivity was 0.18 g l-1 h-1 for S. cerevisiae 2805-39-40, as compared to 0.21 g l-1 h-1 for S. cerevisiae 2805:pVTXR. However, the xylitol productivity of the latter started to decrease rapidly in the third batch and dropped to 0.04 g l-1 h-1 in the seventh batch, whereas the former maintained the stable xylitol productivity at 0.18 g l-1 h-1 through the entire sequential batch culture. The xylitol production level in the chemostat culture was about 8 g l-1 for S. cerevisiae 2805-39-40, as compared to 2.0 g l-1 for S. cerevisiae 2805:pVTXR after 10 days of cultures even though the xylitol production level of the latter was higher than that of the former for the first 5 days. The results of this experiment indicate that S. cerevisiae containing the multiple XYL1 genes on the chromosome is much more efficient for the xylitol production in the long-term non-selective culture than S. cerevisiae harboring the episomal plasmid containing the XYL1 gene.  相似文献   

13.
The letA (ccdA) and letD (ccdB) genes of the F plasmid, located just outside the sequence essential for replication, contribute to stable maintenance of the plasmid in Escherichia coli cells. The letD gene product acts to inhibit partitioning of chromosomal DNA and cell division by inhibiting DNA gyrase activity, whereas the letA gene product acts to reverse the inhibitory activity of the letD gene product. To identify the host factor(s) involved in this process, we analyzed the mutants that escaped letD expression and their suppressor, and found that the three E. coli genes tldD, tldE and zfiA participate in the process, in addition to the groE genes we reported previously. The tldD and tldE mutations made cells tolerant for letD expression, as did groES mutations, while the mutation in the zfiA gene made tldD, tldE and groES mutants LetD sensitive. We hypothesize that these gene products are factors that modulate activity of DNA gyrase along with the letD gene product; the zfiA gene product acts to inhibit interaction between the LetD protein and the A subunit of DNA gyrase, while the tldD, tldE and groE gene products act to suppress the inhibitory activity of the zfiA gene product. The tldD, tldE, and zfiA genes are located at 70.4, 96.0 and 58.2 minutes on the E. coli chromosome, respectively, and code for proteins with relative molecular masses of 51,000, 48,000 and 6800, respectively. tldD is a novel gene, but the tldE and zfiA genes proved to be the pmbA gene (production of Microcin B17) and the csrA gene (carbon storage regulator), respectively.  相似文献   

14.
Immunoglobulin (Ig) heavy chain class switch recombination occurs mainly by joining two switch (S) regions, segments of tandemly repeated DNA sequences that lie upstream of heavy chain constant region genes. The products of this recombination event are a chromosomal DNA joint and a 'looped-out' circular DNA joint. Although a previous study showed that 40% of chromosomal joints in the mu gene switch region (S mu) are found in the flanking regions of S mu, which do not contain typical S mu region repeats [1], other studies revealed that almost all recombination sites on looped-out circular DNA are found within S regions [2-4]. To resolve this discrepancy, we have isolated and sequenced 164 DNA fragments containing recombination joints from both chromosomal and looped-out DNA of a single cell line, the murine B lymphoma line CH12F3, which switches from IgM to IgA production with a high frequency upon cytokine stimulation [5]. The recombination sites were distributed almost evenly in the S mu region and its flanking regions, suggesting that the final joining of DNA ends may not necessarily take place in S regions. In contrast, there were few joining sites in the exon located 5' of the switch region (the I mu exon), suggesting that the 3' end of the I mu exon might be the upstream border of the recombination joint.  相似文献   

15.
A pBR322-based vector, pCI195, containing a 4.2-kb region of the conjugative transposon Tn919 was used as a vector for gene cloning in Clostridium difficile. The plasmid was found to integrate into the chromosome of a Bacillus subtilis strain that contained Tn916 delta E. Southern blot analysis of the recombinant demonstrated that pCI195 had inserted into Tn916 delta E by a recombination event. The transposon::plasmid structure could be transferred, by filter mating, from B. subtilis to C. difficile (at a frequency of 10(-8) per donor), where it entered the chromosome at a specific site. Segregation of plasmid and transposon markers was observed on transfer, although the Tn916 delta E::pCI195 was stably maintained in C. difficile. To demonstrate that pCI195 could be used for gene cloning in C. difficile, a 1.1-kb fragment of the C. difficile toxin B gene was cloned into pCI195 to generate pPPM100. Tn916 delta E::pPPM100 was transferred into a nontoxigenic C. difficile strain by filter mating, where it entered the genome at a specific site. pCI195 should be useful as a general cloning vector for C. difficile, as the transposon::plasmid structure could be transferred to different C. difficile strains. This is the first report of gene cloning in C. difficile.  相似文献   

16.
In the last decade, a great deal of advances in the genetics of Mycobacterium tuberculosis have been made by the introduction of new genetic technologies. In this review, a brief discussion of the progress in mycobacterial genetics, especially, gene cloning, development of host-vector systems, structural analysis of chromosomal DNA, plasmid DNA and mycobacteriophage DNA, IS element, and drug resistance mechanism was presented.  相似文献   

17.
A chromosomal region present in Salmonella typhimurium but absent from related species was identified by hybridization. A DNA probe originating from 78 min on the S. typhimurium chromosome hybridized with DNA from Salmonella enteritidis, Salmonella heidelberg, and Salmonella dublin but not with DNA from Salmonella typhi, Salmonella arizonae, Escherichia coli, and Shigella serotypes. Cloning and sequence analysis revealed that the corresponding region of the S. typhimurium chromosome encodes a fimbrial operon. Long fimbriae inserted at the poles of the bacterium were observed by electron microscopy when this fimbrial operon was introduced into a nonpiliated E. coli strain. The genes encoding these fimbriae were therefore termed lpfABCDE, for long polar fimbriae. Genetically, the lpf operon was found to be most closely related to the fim operon of S. typhimurium, both in gene order and in conservation of the deduced amino acid sequences.  相似文献   

18.
We recently presented an application of the phage display technique enabling cloning of DNA encoding ligand-binding domain(s) of prokaryotic receptors directly from chromosomal DNA. Here we show that the use of a gene VIII-based, instead of a gene III-based, phagemid vector system results in a much more efficient selection for phage displaying a binding capacity. A phagemid library was made by insertion of randomly fragmented chromosomal DNA from Staphylococcus aureus strain 8325-4 into gene VIII in the constructed phagemid vector pG8H6. The library, which in theory should express parts of all proteins encoded by the bacterial genome, was affinity panned against the ligands IgG, fibronectin and fibrinogen, respectively. After a second panning against the same ligand, a significant increase in the number of eluted phagemid particles was observed, and 75%-100% of randomly picked clones contained inserts derived from genes encoding proteins with a binding affinity for the respective ligand. The results show that this technique can be used for cloning prokaryotic receptor genes without any prior knowledge of the receptor, thus eliminating the need for probes in the identification of receptor genes.  相似文献   

19.
The DNA sequences of two related plasmids pPR1 and pPR3 described previously in Streptococcus pneumoniae isolates from Germany and Spain were now determined. Both plasmids belong to a family of rolling circle (RC) plasmids found in a variety of bacteria. Their GC content with 32% is lower than that of the S. pneumoniae chromosomal DNA. The plasmid pPR3 has a molecular size of 3160 bp with four putative open reading frames, whereas pPR1 contained a deletion of 313 bp that included the 5'-part of ORF2 and upstream regions and differed by three bp from pPR3. The predicted protein of ORF1 showed high similarity to replication proteins of RC plasmids with 74% identical amino acids to RepA of Streptococcus thermophilus plasmids. Sequences similar to the plus origin of replication of ssDNA plasmids were present in both plasmids. They also contained a 152-bp region with over 83% identity to the minus origin of replication of the Streptococcus agalacticae plasmid pMV158.  相似文献   

20.
Unusual chloroplast transformants of Chlamydomonas reinhardtii that contain 2000 copies of a mutant version of the chloroplast atpB gene, maintained as an extrachromosomal tandem repeat, have recently been described. In this paper studies have been undertaken to (i) address possible mechanisms for generating and maintaining the amplified DNA and (ii) determine whether it is possible to use chloroplast gene amplification to overexpress chloroplast or foreign genes. Data presented here indicate that high copy number transformants harbor characteristic rearrangements in both copies of the chloroplast genome large inverted repeat. These rearrangements appear to be a consequence of, or required for, maintenance of the amplified DNA. In an attempt to mimic the apparently autonomous replication of extrachromosomal DNA in the chloroplast, transformation was carried out with a plasmid that lacked homology with the chloroplast genome or with the same plasmid carrying a putative chloroplast DNA replication origin (oriA). Transformants were recovered only with the plasmid containing oriA, and all transformants contained an integrated plasmid copy at oriA, suggesting that establishment or maintenance of the extrachromosomal tandem repeat requires conditions that were not replicated in this experiment. To determine whether other genes could be maintained at high copy number in the chloroplast, plasmids carrying the wild-type atpB gene or the bacterial aadA gene were introduced into a high copy number transformant. Surprisingly, the copy number of the plasmid tandem repeat declined rapidly after the secondary transformation events, even when strong selective pressure for the introduced gene was applied. Thus, chloroplast transformation can either create or destabilize high copy number tandem repeats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号