首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Piaractus mesopotamicus juveniles (total length 12 ± 0.5 mm) were exposed to different concentrations of ammonia‐N (un‐ionized plus ionized ammonia as nitrogen), using the static renewal method at different temperature levels (15, 20 and 25°C) at pH 7. The 24, 48, 72, 96 h LC50 values of ammonia‐N in P. mesopotamicus juveniles were 5.32, 4.19, 3.79 and 2.85 mg L?1 at 15°C; 4.81, 3.97, 3.25 and 2.50 mg L?1 at 20°C; and 4.16, 3.79, 2.58 and 1.97 mg L?1 at 25°C respectively. The 24, 48, 72, 96 h LC50 values of NH3‐N (un‐ionized ammonia as nitrogen) were 0.018, 0.014, 0.013, 0.009 mg L?1 at 15°C temperature; 0.023, 0.019, 0.016 and 0.012 mg L?1 at 20°C; 0.029, 0.026, 0.018 and 0.014 mg L?1 at 25°C. The temperature increase from 15 to 25°C caused an increase of ammonia‐N susceptibility by 21.80%, 9.55%, 31.92% and 30.87%, after 24, 48, 72 and 96 h exposure respectively. Furthermore, we found that exposure of fish to ammonia‐N caused an elevation in total haemoglobin and blood glucose with an increase of 2 mg L?1 concentration. Ammonia levels tolerated, especially in different temperatures levels, have important implications for the management of aquaculture.  相似文献   

2.
Ammonia toxicity and morphological changes in gills of juvenile Japanese flounder Paralichthys olivaceus (5.76 ± 0.12 g) were investigated when fish were separately exposed to normal dissolved oxygen (DO) at 6.5 ± 0.5 mg L?1 and supersaturated oxygen at 16.0 ± 2.0 mg L?1 at different ammonia concentrations. Under normal oxygen, ammonia concentrations were tested from 0.04 (control) to 93.3 mg L?1 total ammonia nitrogen (TAN), whereas under oxygen supersaturation, ammonia concentrations ranged from 0.04 (control) to 226.7 mg L?1 TAN in the trial. After exposure to ammonia for 96 h, the ammonia LC50 for fish was 62.48 mg L?1 TAN (0.50 mg L?1 NH3–N) at normal oxygen and 160.71 mg L?1 TAN (0.65 mg L?1 NH3–N) at oxygen supersaturation. Light microscopic observations confirmed that gill damage in normal oxygen was more profound than in oxygen supersaturation when fish were exposed to the same level of TAN (93.3 mg L?1). Furthermore, electron microscopic scanning also showed more crimple, retraction and fibrosis on the secondary lamella surface in fish exposed to normal oxygen than those in fish exposed to supersaturated oxygen at the same TAN (93.3 mg L?1). This study suggests that supersaturated oxygen can increase ammonia tolerance in Japanese flounder through reducing gill damage by ammonia, which partially explains the merit of using pure oxygen injection in intensive fish farming.  相似文献   

3.
The tolerance of Litopenaeus vannamei larvae to increasing concentrations of total ammonia nitrogen (TAN) using a short‐term static renewal method at 26°C, 34 g L?1 salinity and pH 8.5 was assessed. The median lethal concentration (24 h LC50) for TAN in zoea (1‐2‐3), mysis (1‐2‐3) and postlarvae 1 were, respectively, 4.2‐9.9‐16.0; 19.0‐17.3‐17.5 and 13.2 mg L?1TAN (0.6‐1.5‐2.4; 2.8‐2.5‐2.6 and 1.9 mg L?1 NH3‐N). The LC50 values obtained in this study suggest that zoeal and post‐larval stages are more sensitive to 24 h ammonia exposure than the mysis stage of L. vannamei larvae. On the basis of the ammonia toxicity level (24 h LC50) at zoea 1, we recommend that this level does not exceed 0.42 mg L?1 TAN – equivalent to 0.06 mg L?1 NH3‐N – to reduce ammonia toxicity during the rearing of L. vannamei larvae.  相似文献   

4.
Ammonia is a metabolite of aquatic organisms which might reach deleterious levels in intensive fish farms. The aim of the present study was to determine median lethal concentrations (96‐h LC50) of total ammonia nitrogen (TA‐N) on marbled spinefoot rabbitfish (Siganus rivulatus) and chronic effects of TA‐N on survival, growth and behaviour of juvenile rabbitfish over a 50 day period. In the first experiment, fish were exposed to 0, 2, 4, 6, 8, 10, 12, 14, 16, 18 and 20 mg L?1 TA‐N for 96 h and survival evaluated. In the second experiment, 12 fish were stocked per 50‐L tank and treated with one of 0, 2, 4, 6, 8, 10 and 12 mg L?1 TA‐N with three replicate tanks per treatment. Survival and growth were determined and histopathological alterations of gills due to chronic ammonia exposure were studied by light and electron microscopy. The 96‐h LC50 values were 16–18 mg L?1 TA‐N. In the chronic exposure experiment, fish reared in water with 0 mg L?1 TA‐N had 100% survival and had 50% weight increase in 50 days. Fish at 2 and 4 mg L?1 TA‐N all died whilst fish in 6, 8, 10 and 12 mg L?1 TA‐N survived and grew albeit less than in treatment 0 mg L?1. Gills from ammonia treated fish displayed severe histological and ultrastructural alterations including hyperplasia, hypertrophy and fusion of secondary lamellae, aneurysms and presence of pleomorphic altered cells. Chronic exposure to ammonia is deleterious to marbled spinefoot rabbitfish and low concentrations of ammonia appear to kill the fish in <50 days whilst fish can survive for more than 50 days at concentrations between 6 and 12 mg L?1 TA‐N.  相似文献   

5.
The nitrite toxicity was estimated in juveniles of L. vannamei. The 24, 48, 72 and 96 h LC50 of nitrite‐N on juveniles were 8.1, 7.9, 6.8 and 5.7 mg L?1 at 0.6 g L?1; 14.4, 9.6 8.3 and 7.0 mg L?1 at 1.0 g L?1; 19.4, 15.4, 13.4 and 12.4 mg L?1 at 2.0 g L?1 of salinity respectively. The tolerance of juveniles to nitrite decreased at 96 h of exposure by 18.6% and 54.0%, when salinity declined from 1.0 to 0.6 g L?1 and from 2.0 to 0.6 g L?1 respectively. The safe concentrations at salinities of 0.6, 1.0 and 2.0 g L?1 were 0.28, 0.35 and 0.62 mg L?1 nitrite‐N respectively. The relationship between LC50 (mg L?1), salinity (S) (g L?1) and exposure time (T) (h) was LC50 = 8.4688 + 5.6764S – 0.0762T for salinities from 0.6 to 2.0 g L?1 and for exposure times from 24 to 96 h; the relationship between survival (%) and nitrite‐N concentration (C) for salinity of 0.6–2.0 g L?1, nitrite‐N concentrations of 0–40 mg L?1 and exposure times from 0 to 96 h was as follows: survival (%) = 0.8442 + 0.1909S – 0.0038T – 0.0277C + 0.0008ST + 0.0001CT–0.0029SC, and the tentative equation for predicting the 96‐h LC50 to salinities from 0.6 to 35 g L?1 in L. vannamei juveniles (3.9–4.4 g) was 96‐h LC50 = 0.2127 S2 + 1.558S + 5.9868. For nitrite toxicity, it is shown that a small change in salinity of waters from 2.0 to 0.6 g L?1 is more critical for L. vannamei than when wider differences in salinity occur in brackish and marine waters (15–35 g L?1).  相似文献   

6.
Marbled rabbitfish, Siganus rivulatus, is an economically valuable herbivorous fish and a potential candidate for warmwater aquaculture. This study was carried out to: (1) assess the effect of various oxygen concentrations on survival and behaviour of S. rivulatus fingerlings and (2) investigate the response of S. rivulatus to hypoxia and determine its critical oxygen tension (Pcrit). In the first experiment, groups of rabbitfish (15 fish per group) were maintained for 1 h in waters of various oxygen concentrations. They were then transferred to well‐aerated tanks and observed for 72 h. Survival was recorded, fish behaviour at low oxygen concentrations observed, and LC50 after 1‐h hypoxia and 72‐h recovery evaluated. In the second experiment, a series of stop‐flow respirometry experiments were performed during which dissolved oxygen was allowed to drop to 0.5 mg L?1 and respiration rate recorded at various oxygen concentrations. In the first experiment, all fish survived for 1 h at oxygen concentration of 1.44 mg L?1 and greater, but started dying at oxygen concentrations below 0.65 mg L?1 (16% survival). The LC50 of S. rivulatus fingerlings was 0.6 mg L?1. Results of the second experiment showed that S. rivulatus is an oxyregulator until Pcrit (1.7 mg L?1 O2) is reached, becoming an oxyconformer below this concentration. Findings allow for a better understanding of environmental oxygen tolerances and minimum acceptable oxygen concentration in rabbitfish aquaculture.  相似文献   

7.
Optimal water quality is considered as being a restriction for marine copepod cultures for live feed. There is a lack of knowledge on the water‐quality conditions in copepod cultures and the effect on copepods. Few studies have investigated the effect of ammonia on copepods, and fewer reports No Observed Effect Concentrations (NOEC) and Lowest Observed Effect Concentrations (LOEC), which provides safety levels before cultures are affected. This study investigates the tolerance of Acartia tonsa nauplii and adults to ammonia, using mortality as the endpoint after 24, 48 and 72 h of exposure. Nauplii were exposed to levels from 0 to 5127 μg NH3 L?1 and adults to levels from 0 to 8481 μg NH3 L?1. Nauplii NOEC was 30 μg NH3 L?1 and LOEC was 81 μg NH3 L?1. Adult NOEC was 477 μg NH3 L?1 and LOEC was 1789 μg NH3 L?1. 50% Lethal Concentrations (LC50) for nauplii of 48 and 72 h was 1257 and 220 μg NH3 L?1. LC50 for adults was 2370 (24 h), 972 (48 h) and 770 (72 h). Combining NOEC with excretion rates of NH4/NH3 a model was developed to calculate densities in batch cultures. We recommend that for batch cultures of A. tonsa, NH3 is kept below NOEC for nauplii and that levels of NH3 together with pH are monitored weekly.  相似文献   

8.
The objective of this study was to determine the long‐term effects of ambient unionized ammonia nitrogen (NH3‐N) combined with different feeding regimes on Atlantic salmon Salmo salar L parr growth, welfare and smoltification. Previous studies on the parr stage of Atlantic salmon have mostly focused on acute exposure, or at low temperatures. Atlantic salmon parr were exposed for 105 days (at 12°C, pH 6.8) to four sublethal ammonia concentrations ranging from 0.1 to 35 μg L?1 NH3‐N (0.1–25 mg L?1 TAN) at two feeding levels: full feed strength (+20% overfeeding) and 1/3 of full feed strength. After 21 days, it was observed that 32 μg L?1 NH3‐N reduced growth rate of parr fed full ration, but this effect was not evident at the end of the exposure. Feed utilization was not affected by ammonia exposure at any sampling point. Increasing ammonia levels were associated with a higher prevalence and severity of gill damage at 22 days but not at the end of the exposure. The examination of welfare indicators revealed only a few pathologies, not related to ammonia exposure. In addition, higher ammonia concentrations did not appear to influence the development of hypo‐osmoregulatory ability during parr‐smolt transformation.  相似文献   

9.
Ammonia is present in the aquatic environment due to agricultural runoff, sewage effluents and decomposition of biological waste. High level of ammonium in the aquatic environment or in aquaculture farms is a serious problem for aquatic organisms. In the present investigation, the sublethal effects of total ammonia nitrogen (TAN) at 9.98 mg L?1 on plasma electrolytes (Na+, K+ and Cl?) level of Indian major carp Catla catla fingerlings was studied for a period of 35 days under semistatic conditions. Exposure of fish to sublethal concentration of TAN at 9.98 mg L?1 caused changes in the levels of plasma electrolytes (Na+, K+ and Cl?) compared with control fish. No mortality was observed in any group during the treatment period. The present study reveals that the levels of plasma sodium and potassium (except on 7th day) electrolytes were significantly (< 0.05) decreased throughout the study period. However, the decrease in plasma chloride level was found to be not significant when compared with control group. The present study concludes that the measurements of plasma electrolytes levels can be used as potential biomarkers for monitoring nitrogenous chemicals in aquatic environment.  相似文献   

10.
Ammonium toxicity of short‐duration alkaline events and their variability, as related to 1–30 day‐old postlarvae whiteleg shrimp Litopenaeus vannamei (Boone), was assessed by determining medium lethal concentration (LC50) of total ammonium‐nitroen (TAN) and NH3‐N to 4‐h exposures. Exploratory concentrations of TAN were tested at 30°C and pH 9, until mortality from 5% to 95% occurred between 0.9 and 18 mg N L?1. To determine the daily variation of ammonium toxicity, 64 lots of 20 postlarvae were exposed to eight different ammonium concentrations (0, 0.9, 3, 6, 9, 12, 15 and 18 mg N L?1), in two different environmental scenarios: α (pH 8, 26°C) and β (pH 9, 30°C). In environmental scenario α, ammonium concentrations up to 18 mg L?1 pose no short‐term mortality risks for ages 1–30 days. In scenario β, mortality was recorded at all ages. The values of LC50 (4 h) for different postlarvae ages have daily variability, ranging from a minimum of 2.54 to a maximum of 6.02 mg L?1 of TAN (0.76 and 1.81 mg N L?1 of NH3‐N), for PL3 and PL19, respectively, with a logarithmic linear tendency to increase with age. Postlarvae mortality at 4 h and 3.0 mg N L?1 TAN exposure was lower and less variable in ages greater than 19 days old.  相似文献   

11.
To investigate the effect of non‐ionic ammonia (NH3‐N) stress (0.1 and 0.5 mg L?1) on the immunity of Litopenaeus vannamei cultured in long‐term freshwater, the total haemocyte count (THC), the activity of phenoloxidase (PO), nitric oxide synthase (NOS), superoxidase dismutase (SOD) and the content of malondialdehyde (MDA) were determined and further compared with those of seawater shrimps. The results showed that NH3‐N stress significantly reduced THC and the activity of PO and SOD (P < 0.05). Under 0.1 mg L?1 NH3‐N stress, NOS activity increased first and then decreased significantly, while it dropped dramatically under 0.5 mg L?1 NH3‐N stress (P < 0.05). During NH3‐N stress, MDA content increased continuously, and the MDA content in hepatopancreas of freshwater shrimps was higher than that of seawater shrimps. It was concluded that NH3‐N stress significantly influenced the non‐specific immunity and could also upset the balance of antioxidant system of L. vannamei in both freshwater and seawater shrimps. Compared with in seawater, the shrimps in freshwater were more vulnerable to NH3‐N stress because of higher lipid peroxidation and lower immunity.  相似文献   

12.
The aim of this study was to investigate the effects of ammonia exposure on stress and immune response in turbot. The species was exposed to five total ammonia nitrogen (TAN) concentrations: 0 (control), 1, 5, 20 and 40 mg L?1 for 96 h. After 0, 24, 48 and 96 h of exposure, blood samples were collected to measure the levels of corticotropin‐releasing hormone (CRH), adrenocorticotropic hormone (ACTH), cortisol, growth hormone (GH), lysozyme (LZM), complement 3 (C3), complement 4 (C4) and immunoglobulinM (IgM); liver samples were taken to analyse oxidative stress parameters (superoxide dismutase, SOD; catalase, CAT; glutathione, GSH; malondialdehyde, MDA), and gene expression of heat shock proteins (HSP 70 and HSP 90) and insulin‐like growth factor‐1 (IGF‐1). The results showed that exposure to higher concentrations of TAN (20 and/or 40 mg L?1) enhanced the levels of CRH, ACTH and cortisol and attenuated the levels of GH, LZM, C3, C4 and IgM in plasma of turbot after 48 and 96 h. In liver, TAN (20 and/or 40 mg L?1) apparently increased the activities of antioxidative enzymes (SOD and CAT), mRNA levels of HSP (HSP 70 and 90) and formation of MDA, decreased the content of GSH and mRNA levels of IGF‐1 after 48 and 96 h of exposure. Overall, our results suggested that high ammonia exposure caused activation of hypothalamic–pituitary–interrenal axis, inhibition of GH/IGF axis and immunity, and occurrence of oxidative stress.  相似文献   

13.
The aim of this study was to assess the chronic effects of a bio‐pesticide (NeemAzal) on some biochemical parameters of grass carp (Ctenopharyngodon idella) under laboratory conditions. At first, 96 h LC50 of the pesticide was determined using probit analysis software and was found to be 0.73 mg L?1 of the active ingredient (azadirachtin) of the pesticide. Fresh fish were then divided into three treatments and a control and were exposed to sublethal concentrations (10%, 20% and 30% of the 96 h LC50 value) of the pesticide for a month. The biochemical examination of the blood showed a remarkable decrease in values of protein, albumin, AST, ALT, ALP and LDH (P < 0.05).  相似文献   

14.
Formalin (37–40% formaldehyde) is one of the most effective, widely used chemical in pisciculture for its antiparasitic, antifungal and prophylactic activities. It is used in paints, cleaning products and textile industry, as well. Genotoxic and histological effects of sublethal formalin exposure on Nile tilapia (Oreochromis niloticus) are investigated in this study. The semi‐static acute test was employed. One‐tenth, one‐fifth and half of the 96‐h LC50 value, 148 mg L?1, were used as sublethal exposure concentrations: 15, 30 and 75 mg L?1 for 24, 48, 96 and 168 h respectively. The micronucleus test was applied to investigate the genotoxic effects on fish erythrocytes at the end of predetermined exposure periods and all tissues of the fish were sampled for histological examination. The micronucleus frequencies increased significantly in all exposure groups when compared with their control groups in a dose and time dependent manner (< 0.05). Results of histological examination showed no histopathological findings in the gonads, heart, skeletal muscle, spleen and intestine tissues after sublethal formalin exposure. Passive hyperaemia of liver tissue in varying proportions, hydropic degeneration, fatty degeneration in high concentrations, branchitis on gill tissues in varying proportions, epithelial lifting, telangiectasia, bleeding in kidney and hyperaemia were found in Nile tilapia exposed to formalin at different concentrations and durations. As a result, it is thought that formalin leads to tissue damage and shows genotoxic effects even at 15 mg L?1 concentration in O. niloticus.  相似文献   

15.
Currently, the only effective and commercially used treatment for amoebic gill disease (AGD) in farmed Tasmanian Atlantic salmon is freshwater bathing. Hydrogen peroxide (H2O2), commonly used throughout the aquaculture industry for a range of topical skin and gill infections, was trialled in vitro and in vivo to ascertain its potential as an alternative treatment against AGD. Under in vitro conditions, trophozoites of Neoparamoeba perurans were exposed to three concentrations of H2O2 in sea water (500, 1000 and 1500 mg L?1) over four durations (10, 20, 30 and 60 min) each at two temperatures (12 and 18 °C). Trophozoite viability was assessed immediately post‐exposure and after 24 h. A concentration/duration combination of 1000 mg L?1 for >10 min demonstrated potent amoebicidal activity. Subsequently, Atlantic salmon mildly affected with experimentally induced AGD were treated with H2O2 at 12 and 18 °C for 15 min at 1250 mg L?1 and their re‐infection rate was compared to freshwater‐treated fish over 21 days. Significant differences in the percentage of filaments affected with hyperplastic lesions (in association with amoebae) and plasma osmolality were noted between treatment groups immediately post‐bath. However, the results were largely equivocal in terms of disease resolution over a 3‐week period following treatment. These data suggest that H2O2 treatment in sea water successfully ameliorated a clinically light case of AGD under laboratory conditions.  相似文献   

16.
This study was conducted to determine the effects of dietary α‐ketoglutarate (AKG) supplementation on the antioxidant defense system and gene expression of heat shock protein (HSP) 70 and HSP 90 in hybrid sturgeons Acipenser schrenckii ♀ × A. baerii ♂ exposed to ammonia‐N stress. A 2 × 3 factorial experiment was arranged, in which each diet (0%, 1% AKG) was randomly assigned to 0.25 (control) 5 and 10 mg L?1 ammonia‐N groups with three replicate aquaria for each 72 h. The 10 mg L?1 ammonia‐N significantly increased serum ammonia concentrations and intestinal Gln concentrations and GS activity compared with the 0.25 or 5 mg L?1 ammonia‐N groups. The intestinal Gln concentration and GS activity increased, and the serum ammonia concentration decreased, in fish given dietary supplementation of 1.0% AKG compared with fish given diets without AKG. Superoxide dismutase (SOD) and glutathione peroxidase (GPx) activity in serum, gills and intestines decreased when fish were exposed to 5 or 10 mg L?1 ammonia‐N, and their activity increased in fish given diets with 1% AKG. Catalase in the serum and gills decreased when fish were exposed to 5 or 10 mg L?1 ammonia‐N and increased in fish given diets with 1% AKG. The 10 mg L?1 ammonia‐N or 1% AKG supplementation increased HSP 70 and HSP 90 gene expression in the liver. The increased activity of antioxidant enzymes, and increased HSP 70 and HSP 90 gene expression in fish fed diets containing 1% AKG suggested higher tolerance to ammonia‐N stress.  相似文献   

17.
The effects of ditch size on growth and production of mono‐sex tilapia, Oreochromis niloticus in rain fed concurrent rice–fish system were technically and economically evaluated for a period of 4 months. Three different ditch sizes were tried: 5%, 10% and 15% of the total cultivable rice field. The fish fingerlings stocking density (5000 ha?1) and management practices were similar in all plots. The water temperature, dissolve oxygen, pH, Secchi disc visibility, ortho‐phosphate, ammonia nitrogen and alkalinity were found to be in the range of 31.5–31.9°C, 5.10–5.27 mg L?1, 7.56–7.62, 34.81–35.41 cm, 0.88–0.96 mg L?1, 0.014–0.021 mg L?1 and 66.23–69.76 mg L?1, respectively, and all the values were found suitable for tilapia fish farming. Sediment organic matter, available nitrogen and phosphorous were increased significantly (P < 0.05) in all plots after cultivating the fish. Larger ditch size (15% of the total land area) resulted in significantly (P < 0.05) higher specific growth rate, survival and fish production compared with the smaller (5%) and medium (10%) ditch sizes. However, significantly (P < 0.05) higher net income and benefit–cost ratio were obtained in medium ditch size with the values of 2.6% and 3.6% higher than the smaller and larger ditch sizes respectively. It is concluded that rice–fish farming in a rain fed ecosystem of Bangladesh with medium ditch size and stocking density of 5000 ha?1 mono‐sex tilapia can achieve better economic return.  相似文献   

18.
The amelioration effect of balanced diet with supplementation of vitamin C against stress was evaluated in freshwater paddy field fish, Clarias batrachus, exposed to organophosphate insecticide, monocrotophos (MCP). Three groups of fishes, that is, (E0) Control, (E1) MCP (2.14 mg L?1) exposure and E2) Vitamin C, MCP (0.2 g kg?1 body weight + 2.144 mg L?1) were selected for the sublethal study. The effect of MCP on protein metabolism in physiological sensitive tissues, namely gills, kidney, liver and muscle of the fish has been determined. Stress on Clarias batrachus was evident that the total protein, amino acid and ammonia contents were decreased, and urea and glutamine levels were elevated in all tissues for 30 days. Similarly, the activities of protease, aminotransferases and phosphatases were elevated significantly in all the tissues during the same period. Fish fed with a diet supplemented by vitamin C (0.2 g kg?1 body weight) could significantly counter these effects.  相似文献   

19.
Four successive life stages (zoea-III, zoea-IV, zoea-V and megalopa) of the Chinese mitten-handed crab, Eriocheir sinensis (H. Milne-Edwards), were exposed to ammonia in a series of short-term bioassays with the static-renewal method at 22°C, pH 8.0 and 25%o salinity. The greatest sensitivity was observed in the zoea-III stage. The 24-h LC50 values for zoea-III, zoea-IV, zoea-V and megalopa were 32.8, 73.1, 84.0 and 90.1 mg L?1 for NH3+ NH4+, and 1.11, 2.36, 2.77 and 3.18 mg L?1 for NH3, respectively. The 72-h LC50 values for zoea-III, zoea-IV and zoea-V were 11.9, 23.6 and 38.2 mg L?1 for NH3+ NH4+, and 0.40, 0.76 and 1.26 mg L?1 for NH3, respectively. The 96-h LC50 values for megalopa were 37.3 mg L?1 for NH3+ NH4+ and 1.31 mg L?1 for NH3. It was found that ammonia tolerance increased with larval development from zoea-III to megalopa, especially from zoea-III to zoea-IV and from zoea-IV to zoea-V. A comparison of safe levels of ammonia among the different life stages indicated that all stages were significantly different with respect to safe levels of ammonia (P < 0.05) except zoea-V and megalopa, which had the highest safe levels. In general, both the larvae and juveniles of E. sinensis are less resistant to ammonia than those of other crustacean species studied so far.  相似文献   

20.
Ichthyobodo necator is a single‐celled biflagellate parasite, which in high density can cause significant mortality in young fish. Copper sulphate (CuSO4), potassium permanganate (KMnO4) and peracetic acid (PAA) were evaluated for effectiveness against ichthyobodosis. Treatments were: untreated control, 2.1 mg L?1CuSO4, 3.0 mg L?1 KMnO4, 1.5 mg L?1 PAA and 3.0 mg L?1 PAA, and were applied to flow‐through tanks on three consecutive days. The study was designed to simulate the flow‐through systems utilized in the commercial rearing of juvenile channel catfish (Ictalurus punctatus). Mortality was monitored daily to compare survival rate among treatments. Parasite intensity was assessed pre chemical exposure and 20–24 h after the third application to determine effectiveness of the treatment. An assessment was also done 7 days post application to investigate possible reoccurrence. Copper sulphate, KMnO4 and PAA (3.0 mg L?1) significantly reduced the infestation rate of I. necator. Copper sulphate significantly improved the survival of I. necator infested channel catfish after three flow‐through applications compared with the untreated control. The 3.0 mg L?1 PAA resulted in significantly lower survival than the untreated control, the 1.5 mg L?1 PAA and the KMnO4 were not statistically different from the untreated control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号