首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
2.
3.
4.
5.
O-GlcNAcylation (addition of N-acetyl-glucosamine on serine or threonine residues) is a post-translational modification that regulates stability, activity or localization of cytosolic and nuclear proteins. O-linked N-acetylgluocosmaine transferase (OGT) uses UDP-GlcNAc, produced in the hexosamine biosynthetic pathway to O-GlcNacylate proteins. Removal of O-GlcNAc from proteins is catalyzed by the β-N-Acetylglucosaminidase (OGA). Recent evidences suggest that O-GlcNAcylation may affect the growth of cancer cells. However, the consequences of O-GlcNAcylation on anti-cancer therapy have not been evaluated. In this work, we studied the effects of O-GlcNAcylation on tamoxifen-induced cell death in the breast cancer-derived MCF-7 cells. Treatments that increase O-GlcNAcylation (PUGNAc and/or glucosoamine) protected MCF-7 cells from death induced by tamoxifen. In contrast, inhibition of OGT expression by siRNA potentiated the effect of tamoxifen on cell death. Since the PI-3 kinase/Akt pathway is a major regulator of cell survival, we used BRET to evaluate the effect of PUGNAc+glucosamine on PIP3 production. We observed that these treatments stimulated PIP3 production in MCF-7 cells. This effect was associated with an increase in Akt phosphorylation. However, the PI-3 kinase inhibitor LY294002, which abolished the effect of PUGNAc+glucosamine on Akt phosphorylation, did not impair the protective effects of PUGNAc+glucosamine against tamoxifen-induced cell death. These results suggest that the protective effects of O-GlcNAcylation are independent of the PI-3 kinase/Akt pathway. As tamoxifen sensitivity depends on the estrogen receptor (ERα) expression level, we evaluated the effect of PUGNAc+glucosamine on the expression of this receptor. We observed that O-GlcNAcylation-inducing treatment significantly reduced the expression of ERα mRNA and protein, suggesting a potential mechanism for the decreased tamoxifen sensitivity induced by these treatments. Therefore, our results suggest that inhibition of O-GlcNAcylation may constitute an interesting approach to improve the sensitivity of breast cancer to anti-estrogen therapy.  相似文献   

6.
Cell death can be divided into the anti-inflammatory process of apoptosis and the pro-inflammatory process of necrosis. Necrosis, as apoptosis, is a regulated form of cell death, and Poly-(ADP-Ribose) Polymerase-1 (PARP-1) and Receptor-Interacting Protein (RIP) 1/3 are major mediators. We previously showed that absence or inhibition of PARP-1 protects mice from nephritis, however only the male mice. We therefore hypothesized that there is an inherent difference in the cell death program between the sexes. We show here that in an immune-mediated nephritis model, female mice show increased apoptosis compared to male mice. Treatment of the male mice with estrogens induced apoptosis to levels similar to that in female mice and inhibited necrosis. Although PARP-1 was activated in both male and female mice, PARP-1 inhibition reduced necrosis only in the male mice. We also show that deletion of RIP-3 did not have a sex bias. We demonstrate here that male and female mice are prone to different types of cell death. Our data also suggest that estrogens and PARP-1 are two of the mediators of the sex-bias in cell death. We therefore propose that targeting cell death based on sex will lead to tailored and better treatments for each gender.  相似文献   

7.
Estrogen receptor alpha (ERα) is present in the nucleus, the cytosol and in mitochondria. The rat ERα ligand binding domain was employed as bait in a bacterial two-hybrid screening of a human heart cDNA library to detect novel protein-protein interaction partners of ERα in the heart. 17β-Hydroxysteroid dehydrogenase type 10 (17β-HSD10), which converts potent (17β-estradiol) to less potent estrogens (estrone), co-localized with 17β-HSD10 in the mitochondria of rat cardiac myocytes. GST pull-down experiments confirmed the interaction of ERα and 17β-HSD10. These findings suggest that the ERα estrogen receptor might be involved in regulating intracellular estrogen levels by modulating 17β-HSD10 activity.  相似文献   

8.
Renal cell carcinoma (RCC) originates in the lining of the proximal convoluted tubule and accounts for approximately 3% of adult malignancies. The RCC incidence rate increases annually and is twofold higher in males than in females. Female hormones such as estrogen may play important roles during RCC carcinogenesis and result in significantly different incidence rates between males and females. In this study, we found that estrogen receptor β (ERβ) was more highly expressed in RCC cell lines (A498, RCC-1, 786-O, ACHN, and Caki-1) than in breast cancer cell lines (MCF-7 and HBL-100); however, no androgen receptor (AR) or estrogen receptor α (ERα) could be detected by western blot. In addition, proliferation of RCC cell lines was significantly decreased after estrogen (17-β-estradiol, E2) treatment. Since ERβ had been documented to be a potential tumor suppressor gene, we hypothesized that estrogen activates ERβ tumor suppressive function, which leads to different RCC incidence rates between males and females. We found that estrogen treatment inhibited cell proliferation, migration, invasion, and increased apoptosis of 786-O (high endogenous ERβ), and ERβ siRNA-induced silencing attenuated the estrogen-induced effects. Otherwise, ectopic ERβ expression in A498 (low endogenous ERβ) increased estrogen sensitivity and thus inhibited cell proliferation, migration, invasion, and increased apoptosis. Analysis of the molecular mechanisms revealed that estrogen-activated ERβ not only remarkably reduced growth hormone downstream signaling activation of the AKT, ERK, and JAK signaling pathways but also increased apoptotic cascade activation. In conclusion, this study found that estrogen-activated ERβ acts as a tumor suppressor. It may explain the different RCC incidence rates between males and females. Furthermore, it implies that ERβ may be a useful prognostic marker for RCC progression and a novel developmental direction for RCC treatment improvement.  相似文献   

9.
10.
11.
The bacterium Streptomyces anulatus 9663, isolated from the intestine of different arthropods, produces prenylated derivatives of phenazine 1-carboxylic acid. From this organism, we have identified the prenyltransferase gene ppzP. ppzP resides in a gene cluster containing orthologs of all genes known to be involved in phenazine 1-carboxylic acid biosynthesis in Pseudomonas strains as well as genes for the six enzymes required to generate dimethylallyl diphosphate via the mevalonate pathway. This is the first complete gene cluster of a phenazine natural compound from streptomycetes. Heterologous expression of this cluster in Streptomyces coelicolor M512 resulted in the formation of prenylated derivatives of phenazine 1-carboxylic acid. After inactivation of ppzP, only nonprenylated phenazine 1-carboxylic acid was formed. Cloning, overexpression, and purification of PpzP resulted in a 37-kDa soluble protein, which was identified as a 5,10-dihydrophenazine 1-carboxylate dimethylallyltransferase, forming a C–C bond between C-1 of the isoprenoid substrate and C-9 of the aromatic substrate. In contrast to many other prenyltransferases, the reaction of PpzP is independent of the presence of magnesium or other divalent cations. The Km value for dimethylallyl diphosphate was determined as 116 μm. For dihydro-PCA, half-maximal velocity was observed at 35 μm. Kcat was calculated as 0.435 s-1. PpzP shows obvious sequence similarity to a recently discovered family of prenyltransferases with aromatic substrates, the ABBA prenyltransferases. The present finding extends the substrate range of this family, previously limited to phenolic compounds, to include also phenazine derivatives.The transfer of isoprenyl moieties to aromatic acceptor molecules gives rise to an astounding diversity of secondary metabolites in bacteria, fungi, and plants, including many compounds that are important in pharmacotherapy. However, surprisingly little biochemical and genetic data are available on the enzymes catalyzing the C-prenylation of aromatic substrates. Recently, a new family of aromatic prenyltransferases was discovered in streptomycetes (1), Gram-positive soil bacteria that are prolific producers of antibiotics and other biologically active compounds (2). The members of this enzyme family show a new type of protein fold with a unique α-β-β-α architecture (3) and were therefore termed ABBA prenyltransferases (1). Only 13 members of this family can be identified by sequence similarity searches in the data base at present, and only four of them have been investigated biochemically (36). Up to now, only phenolic compounds have been identified as aromatic substrates of ABBA prenyltransferases. We now report the discovery of a new member of the ABBA prenyltransferase family, catalyzing the transfer of a dimethylallyl moiety to C-9 of 5,10-dihydrophenazine 1-carboxylate (dihydro-PCA).2 Streptomyces strains produce many of prenylated phenazines as natural products. For the first time, the present paper reports the identification of a prenyltransferase involved in their biosynthesis.Streptomyces anulatus 9663, isolated from the intestine of different arthropods, produces several prenylated phenazines, among them endophenazine A and B (Fig. 1A) (7). We wanted to investigate which type of prenyltransferase might catalyze the prenylation reaction in endophenazine biosynthesis. In streptomycetes and other microorganisms, genes involved in the biosynthesis of a secondary metabolite are nearly always clustered in a contiguous DNA region. Therefore, the prenyltransferase of endophenazine biosynthesis was expected to be localized in the vicinity of the genes for the biosynthesis of the phenazine core (i.e. of PCA).Open in a separate windowFIGURE 1.A, prenylated phenazines from S. anulatus 9663. B, biosynthetic gene cluster of endophenazine A.In Pseudomonas, an operon of seven genes named phzABCDEFG is responsible for the biosynthesis of PCA (8). The enzyme PhzC catalyzes the condensation of phosphoenolpyruvate and erythrose-4-phosphate (i.e. the first step of the shikimate pathway), and further enzymes of this pathway lead to the intermediate chorismate. PhzD and PhzE catalyze the conversion of chorismate to 2-amino-2-deoxyisochorismate and the subsequent conversion to 2,3-dihydro-3-hydroxyanthranilic acid, respectively. These reactions are well established biochemically. Fewer data are available about the following steps (i.e. dimerization of 2,3-dihydro-3-hydroxyanthranilic acid, several oxidation reactions, and a decarboxylation, ultimately leading to PCA via several instable intermediates). From Pseudomonas, experimental data on the role of PhzF and PhzA/B have been published (8, 9), whereas the role of PhzG is yet unclear. Surprisingly, the only gene cluster for phenazine biosynthesis described so far from streptomycetes (10) was found not to contain a phzF orthologue, raising the question of whether there may be differences in the biosynthesis of phenazines between Pseudomonas and Streptomyces.Screening of a genomic library of the endophenazine producer strain S. anulatus now allowed the identification of the first complete gene cluster of a prenylated phenazine, including the structural gene of dihydro-PCA dimethylallyltransferase.  相似文献   

12.
13.
Integrin receptor plays key roles in mediating both inside-out and outside-in signaling between cells and the extracellular matrix. We have observed that the tissue-specific loss of the integrin β1 subunit in striated muscle results in a near complete loss of integrin β1 subunit protein expression concomitant with a loss of talin and to a lesser extent, a reduction in F-actin content. Muscle-specific integrin β1-deficient mice had no significant difference in food intake, weight gain, fasting glucose, and insulin levels with their littermate controls. However, dynamic analysis of glucose homeostasis using euglycemichyperinsulinemic clamps demonstrated a 44 and 48% reduction of insulin-stimulated glucose infusion rate and glucose clearance, respectively. The whole body insulin resistance resulted from a specific inhibition of skeletal muscle glucose uptake and glycogen synthesis without any significant effect on the insulin suppression of hepatic glucose output or insulin-stimulated glucose uptake in adipose tissue. The reduction in skeletal muscle insulin responsiveness occurred without any change in GLUT4 protein expression levels but was associated with an impairment of the insulin-stimulated protein kinase B/Akt serine 473 phosphorylation but not threonine 308. The inhibition of insulin-stimulated serine 473 phosphorylation occurred concomitantly with a decrease in integrin-linked kinase expression but with no change in the mTOR·Rictor·LST8 complex (mTORC2). These data demonstrate an in vivo crucial role of integrin β1 signaling events in mediating cross-talk to that of insulin action.Integrin receptors are a large family of integral membrane proteins composed of a single α and β subunit assembled into a heterodimeric complex. There are 19 α and 8 β mammalian subunit isoforms that combine to form 25 distinct α,β heterodimeric receptors (1-5). These receptors play multiple critical roles in conveying extracellular signals to intracellular responses (outside-in signaling) as well as altering extracellular matrix interactions based upon intracellular changes (inside-out signaling). Despite the large overall number of integrin receptor complexes, skeletal muscle integrin receptors are limited to seven α subunit subtypes (α1, α3, α4, α5, α6, α7, and αν subunits), all associated with the β1 integrin subunit (6, 7).Several studies have suggested an important cross-talk between extracellular matrix and insulin signaling. For example, engagement of β1 subunit containing integrin receptors was observed to increase insulin-stimulated insulin receptor substrate (IRS)2 phosphorylation, IRS-associated phosphatidylinositol 3-kinase, and activation of protein kinase B/Akt (8-11). Integrin receptor regulation of focal adhesion kinase was reported to modulate insulin stimulation of glycogen synthesis, glucose transport, and cytoskeleton organization in cultured hepatocytes and myoblasts (12, 13). Similarly, the integrin-linked kinase (ILK) was suggested to function as one of several potential upstream kinases that phosphorylate and activate Akt (14-18). In this regard small interfering RNA gene silencing of ILK in fibroblasts and conditional ILK gene knockouts in macrophages resulted in a near complete inhibition of insulin-stimulated Akt serine 473 (Ser-473) phosphorylation concomitant with an inhibition of Akt activity and phosphorylation of Akt downstream targets (19). However, a complex composed of mTOR·Rictor·LST8 (termed mTORC2) has been identified in several other studies as the Akt Ser-473 kinase (20, 21). In addition to Ser-473, Akt protein kinase activation also requires phosphorylation on threonine 308 Thr-30 by phosphoinositide-dependent protein kinase, PDK1 (22-24).In vivo, skeletal muscle is the primary tissue responsible for postprandial (insulin-stimulated) glucose disposal that results from the activation of signaling pathways leading to the translocation of the insulin-responsive glucose transporter, GLUT4, from intracellular sites to the cell surface membranes (25, 26). Dysregulation of any step of this process in skeletal muscle results in a state of insulin resistance, thereby predisposing an individual for the development of diabetes (27-33). Although studies described above have utilized a variety of tissue culture cell systems to address the potential involvement of integrin receptor signaling in insulin action, to date there has not been any investigation of integrin function on insulin action or glucose homeostasis in vivo. To address this issue, we have taken advantage of Cre-LoxP technology to inactivate the β1 integrin receptor subunit gene in striated muscle. We have observed that muscle creatine kinase-specific integrin β1 knock-out (MCKItgβ1 KO) mice display a reduction of insulin-stimulated glucose infusion rate and glucose clearance. The impairment of insulin-stimulated skeletal muscle glucose uptake and glycogen synthesis resulted from a decrease in Akt Ser-473 phosphorylation concomitant with a marked reduction in ILK expression. Together, these data demonstrate an important cross-talk between integrin receptor function and insulin action and suggests that ILK may function as an Akt Ser-473 kinase in skeletal muscle.  相似文献   

14.
Although ligand-selective regulation of G protein-coupled receptor-mediated signaling and trafficking are well documented, little is known about whether ligand-selective effects occur on endogenous receptors or whether such effects modify the signaling response in physiologically relevant cells. Using a gene targeting approach, we generated a knock-in mouse line, in which N-terminal hemagglutinin epitope-tagged α2A-adrenergic receptor (AR) expression was driven by the endogenous mouse α2AAR gene locus. Exploiting this mouse line, we evaluated α2AAR trafficking and α2AAR-mediated inhibition of Ca2+ currents in native sympathetic neurons in response to clonidine and guanfacine, two drugs used for treatment of hypertension, attention deficit and hyperactivity disorder, and enhancement of analgesia through actions on the α2AAR subtype. We discovered a more rapid desensitization of Ca2+ current suppression by clonidine than guanfacine, which paralleled a more marked receptor phosphorylation and endocytosis of α2AAR evoked by clonidine than by guanfacine. Clonidine-induced α2AAR desensitization, but not receptor phosphorylation, was attenuated by blockade of endocytosis with concanavalin A, indicating a critical role for internalization of α2AAR in desensitization to this ligand. Our data on endogenous receptor-mediated signaling and trafficking in native cells reveal not only differential regulation of G protein-coupled receptor endocytosis by different ligands, but also a differential contribution of receptor endocytosis to signaling desensitization. Taken together, our data suggest that these HA-α2AAR knock-in mice will serve as an important model in developing ligands to favor endocytosis or nonendocytosis of receptors, depending on the target cell and pathophysiology being addressed.G protein-coupled receptors (GPCRs)4 represent the largest family of cell surface receptors mediating responses to hormones, cytokines, neurotransmitters, and therapeutic agents (1). In addition to regulating downstream signaling, ligand binding to a receptor can initiate phosphorylation of the active conformation of the receptor by G protein receptor kinases (GRKs) and subsequent binding of arrestins, thus restricting the magnitude and duration of the ligand-evoked signaling responses (2, 3). Binding of arrestins to GPCRs also leads to GPCR internalization (4, 5), a process that has been proposed as a means to desensitize receptor signaling at the cell surface, resensitize receptors, and/or initiate intracellular signaling (6, 7).Different ligands are able to induce distinct signaling and internalization profiles of the same receptor (8-14). However, the lack of available tools to study trafficking of endogenous GPCRs in native target cells has limited our understanding of ligand-selective endocytosis profiles and the relative contribution of receptor endocytosis to desensitization in native biological settings.To specifically test hypotheses regarding ligand-selective effects on GPCR internalization, and functional consequences of this trafficking on signaling, we utilized a homologous recombination gene targeting strategy to introduce a hemagglutinin (HA) epitope-tagged wild type α2A-adrenergic receptor (AR) into the mouse ADRA2A gene locus (“knock-in”). The α2AAR is a prototypical GPCR that couples to the Gi/o subfamily of G proteins (15). Studies on genetically engineered mice made null or mutant for the α2AAR have revealed that this subtype mediates the therapeutic effects of α2-adrenergic agents on blood pressure, pain perception, volatile anesthetic sparing, analgesia, and working memory enhancement (16-18). Two classic α2-ligands, clonidine and guanfacine, have been widely used to treat hypertension (19), attention deficit and hyperactivity disorder (20), and to elicit analgesia (19, 21) mediated via the α2AAR. Clinically guanfacine has a much longer duration of action than clonidine (22-24); this longer duration of action cannot be accounted for by the pharmacokinetic profile of these agents in human beings, as both drugs have a half-life of 12-14 h (25, 26). Because ligand-induced desensitization and trafficking of GPCRs have been implicated as critical mechanisms for modulating response duration in vivo (3), one hypothesis underlying the difference in duration between clonidine and guanfacine is that clonidine provokes accelerated desensitization of the α2AAR via one or several mechanisms, whereas guanfacine does not. Signaling desensitization in response to these two agonists has not been compared under the same experimental settings. To specifically test this hypothesis, we have exploited our HA-α2AAR knock-in mice so that we could examine these properties of guanfacine and clonidine in native target cells.We compared internalization of the α2AAR and inhibition of Ca2+ currents induced by clonidine and guanfacine in primary superior cervical ganglia (SCG) neurons, where the α2AAR is the major adrenergic receptor subtype controlling norepinephrine release and sympathetic tone (17, 27). Our data revealed a differential regulation of α2AAR trafficking and signaling duration by clonidine versus guanfacine, i.e. clonidine induced a more dramatic desensitization of the α2AAR than guanfacine, and this desensitization was largely because of α2AAR internalization. These studies reveal the powerful tool that the HA-α2AAR knock-in mice provide for identifying endocytosis-dependent and -independent physiological phenomena for this receptor subtype as a first step in defining novel loci for therapeutic intervention in the α2AAR signaling/trafficking cascade.  相似文献   

15.
We present here three expression plasmids for Trypanosoma cruzi adapted to the Gateway® recombination cloning system. Two of these plasmids were designed to express trypanosomal proteins fused to a double tag for tandem affinity purification (TAPtag). The TAPtag and Gateway® cassette were introduced into an episomal (pTEX) and an integrative (pTREX) plasmid. Both plasmids were assayed by introducing green fluorescent protein (GFP) by recombination and the integrity of the double-tagged protein was determined by western blotting and immunofluorescence microscopy. The third Gateway adapted vector assayed was the inducible pTcINDEX. When tested with GFP, pTcINDEX-GW showed a good response to tetracycline, being less leaky than its precursor (pTcINDEX).  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号