首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of the four different methods of measuring Lg amplitude, and the selection of different geometrical attenuation coefficient ζ-values (=5/6 or 1) on the determination ofγ value of Lg wave are discussed.γ=0.0034±0.0001km−1 (when ζ=5/6) for six eastern provinces is redetermined. The revised magnitude calibration function ofm Lg (mxh),q E (Δ)=(5/6)logΔ+0.00147Δ+1.81 is deduced. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,13, 171–178, 1991. Projects sponsored by the Chinese Joint Seismological Science Foundation.  相似文献   

2.
The intrinsic dissipation and scattering attenuation in southwestern (SW) Anatolia, which is a tectonically active region, is studied using the coda waves. First the coda quality factor (Qc) assuming single scattering is estimated from the slope of the coda-wave amplitude decay. Then the Multiple Lapse Time Window (MLTW) analysis is performed with a uniform earth model. Three non-overlapping temporal data windows are used to calculate the scattered seismic energy densities against the source-receiver distances, which, in turn, are used to calculate separate estimates of the intrinsic and scattering factors. In order to explore the frequency dependency, the observed seismograms are band pass-filtered at the center frequencies of 0.75, 1.5, 3.0, 6.0 and 12.0. The scattering attenuation (Qs−1) is found lower than the intrinsic attenuation (Qi−1) at all frequencies except at 0.75 Hz where the opposite is observed. Overall the intrinsic attenuation dominates over the scattering attenuation in the SW Anatolia region. The integrated energy curves obtained for the first energy window (i.e., 0–15 s) are somewhat irregular with distance while the second (i.e., 15–30 s) and third (i.e., 30–45 s) data windows exhibit more regular change with distance at most frequencies. The seismic albedo B0 is determined as 0.61 at 0.75 Hz and 0.34 at 12.0 Hz while the total attenuation factor denoted by Le−1 changes in the range 0.034–0.017. For the source-station range 20–180 km considered the scattering attenuation is found strongly frequency dependent given by the power law Qs−1 = 0.010*f−1.508. The same relations for Qi−1, Qt−1 (total), Qc−1 and (expected) hold as Qi−1 = 0.0090*f−1.17, Qt−1 = 0.019*f−1.31, Qc−1 = 0.008*f−0.84 and respectively. Compared to the other attenuation factors Qc−1 and are less dependent on the frequency.  相似文献   

3.
Small local earthquakes from two aftershock sequences in Porto dos Gaúchos, Amazon craton—Brazil, were used to estimate the coda wave attenuation in the frequency band of 1 to 24 Hz. The time-domain coda-decay method of a single backscattering model is employed to estimate frequency dependence of the quality factor (Q c) of coda waves modeled using Qc = Q0 fhQ_{\rm c} =Q_{\rm 0} f^\eta , where Q 0 is the coda quality factor at frequency of 1 Hz and η is the frequency parameter. We also used the independent frequency model approach (Morozov, Geophys J Int, 175:239–252, 2008), based in the temporal attenuation coefficient, χ(f) instead of Q(f), given by the equation c(f)=g+\fracpfQe \chi (f)\!=\!\gamma \!+\!\frac{\pi f}{Q_{\rm e} }, for the calculation of the geometrical attenuation (γ) and effective attenuation (Qe-1 )(Q_{\rm e}^{-1} ). Q c values have been computed at central frequencies (and band) of 1.5 (1–2), 3.0 (2–4), 6.0 (4–8), 9.0 (6–12), 12 (8–16), and 18 (12–24) Hz for five different datasets selected according to the geotectonic environment as well as the ability to sample shallow or deeper structures, particularly the sediments of the Parecis basin and the crystalline basement of the Amazon craton. For the Parecis basin Qc = (98±12)f(1.14±0.08)Q_{\rm c} =(98\pm 12)f^{(1.14\pm 0.08)}, for the surrounding shield Qc = (167±46)f(1.03±0.04)Q_{\rm c} =(167\pm 46)f^{(1.03\pm 0.04)}, and for the whole region of Porto dos Gaúchos Qc = (99±19)f(1.17±0.02)Q_{\rm c} =(99\pm 19)f^{(1.17\pm 0.02)}. Using the independent frequency model, we found: for the cratonic zone, γ = 0.014 s − 1, Qe-1 = 0.0001Q_{\rm e}^{-1} =0.0001, ν ≈ 1.12; for the basin zone with sediments of ~500 m, γ = 0.031 s − 1, Qe-1 = 0.0003Q_{\rm e}^{-1} =0.0003, ν ≈ 1.27; and for the Parecis basin with sediments of ~1,000 m, γ = 0.047 s − 1, Qe-1 = 0.0005Q_{\rm e}^{-1} =0.0005, ν ≈ 1.42. Analysis of the attenuation factor (Q c) for different values of the geometrical spreading parameter (ν) indicated that an increase of ν generally causes an increase in Q c, both in the basin as well as in the craton. But the differences in the attenuation between different geological environments are maintained for different models of geometrical spreading. It was shown that the energy of coda waves is attenuated more strongly in the sediments, Qc = (78±23)f(1.17±0.14)Q_{\rm c} =(78\pm 23)f^{(1.17\pm 0.14)} (in the deepest part of the basin), than in the basement, Qc = (167±46)f(1.03±0.04)Q_{\rm c} =(167\pm 46)f^{(1.03\pm 0.04)} (in the craton). Thus, the coda wave analysis can contribute to studies of geological structures in the upper crust, as the average coda quality factor is dependent on the thickness of sedimentary layer.  相似文献   

4.
Attenuation of coda waves in the Northeastern Region of India   总被引:1,自引:0,他引:1  
Coda wave attenuation quality factor Qc is estimated in the northeastern region of India using 45 local earthquakes recorded by regional seismic network. The quality factor Qc was estimated using the single backscattering model modified by Sato (J Phys Earth 25:27–41, 1977), in the frequency range 1–18 Hz. The attenuation and frequency dependence for different paths and the correlation of the results with geotectonics of the region are described in this paper. A total of 3,890 Qc measurements covering 187 varying paths are made for different lapse time window of 20, 30, 40, 50, 60, 70, 80, and 90 s in coda wave. The magnitudes of the analyzed events range from 1.2 to 3.9 and focal depths range between 7 and 38 km. The source–receiver distances of the selected events range between 16 and 270 km. For 30-s duration, the mean values of the estimated Qc vary from 50 ± 12 (at 1 Hz) to 2,078 ± 211(at 18 Hz) for the Arunachal Himalaya, 49 ± 14 (at 1 Hz) to 2,466 ± 197 (at 18 Hz) for the Indo-Burman, and 45 ± 13 (at 1 Hz) to 2,069 ± 198 (at 18 Hz) for Shillong group of earthquakes. It is observed that Qc increases with frequency portraying an average attenuation relation for the region. Moreover, the pattern of Qc − 1 with frequency is analogous to the estimates obtained in other tectonic areas in the world, except with the observation that the Qc − 1 is much higher at 1 Hz for the northeastern region. The Qc − 1 is about 10 − 1.8 at 1 Hz and decreases to about 10 − 3.6 at 18 Hz indicating clear frequency dependence. Pertaining to the spatial distribution of Qc values, Mikir Hills and western part of Shillong Plateau are characterized by lower attenuation.  相似文献   

5.
We present a comparative study of soil CO2 flux () measured by five groups (Groups 1–5) at the IAVCEI-CCVG Eighth Workshop on Volcanic Gases on Masaya volcano, Nicaragua. Groups 1–5 measured using the accumulation chamber method at 5-m spacing within a 900 m2 grid during a morning (AM) period. These measurements were repeated by Groups 1–3 during an afternoon (PM) period. Measured ranged from 218 to 14,719 g m−2 day−1. The variability of the five measurements made at each grid point ranged from ±5 to 167%. However, the arithmetic means of fluxes measured over the entire grid and associated total CO2 emission rate estimates varied between groups by only ±22%. All three groups that made PM measurements reported an 8–19% increase in total emissions over the AM results. Based on a comparison of measurements made during AM and PM times, we argue that this change is due in large part to natural temporal variability of gas flow, rather than to measurement error. In order to estimate the mean and associated CO2 emission rate of one data set and to map the spatial distribution, we compared six geostatistical methods: arithmetic and minimum variance unbiased estimator means of uninterpolated data, and arithmetic means of data interpolated by the multiquadric radial basis function, ordinary kriging, multi-Gaussian kriging, and sequential Gaussian simulation methods. While the total CO2 emission rates estimated using the different techniques only varied by ±4.4%, the maps showed important differences. We suggest that the sequential Gaussian simulation method yields the most realistic representation of the spatial distribution of , but a variety of geostatistical methods are appropriate to estimate the total CO2 emission rate from a study area, which is a primary goal in volcano monitoring research.Editorial responsibility: H Shinohara  相似文献   

6.
Abiogenic hydrocarbons in commercial gases from the Songliao Basin, China   总被引:3,自引:0,他引:3  
This paper discusses the kinetic fractionation, composition and distribution characteristics of carbon and hydrogen isotopes for various alkane gases formed in different environments, by different mecha- nisms and from different sources in nature. It is demonstrated that the biodegradation or thermode- gradation of complex high-molecule sedimentary organic material can form microbial gas or thermogenic gas. The δ 13C1 value ranges from -110‰ to -50‰ for microbial gases but from -50‰ to -35‰ (even heavier) f...  相似文献   

7.
Attenuation of P,S, and coda waves in Koyna region,India   总被引:1,自引:0,他引:1  
The attenuation properties of the crust in the Koyna region of the Indian shield have been investigated using 164 seismograms from 37 local earthquakes that occurred in the region. The extended coda normalization method has been used to estimate the quality factors for P waves and S waves , and the single back-scattering model has been used to determine the quality factor for coda waves (Q c). The earthquakes used in the present study have the focal depth in the range of 1–9 km, and the epicentral distance vary from 11 to 55 km. The values of and Q c show a dependence on frequency in the Koyna region. The average frequency dependent relationships (Q = Q 0 f n) estimated for the region are , and . The ratio is found to be greater than one for the frequency range considered here (1.5–18 Hz). This ratio, along with the frequency dependence of quality factors, indicates that scattering is an important factor contributing to the attenuation of body waves in the region. A comparison of Q c and in the present study shows that for frequencies below 4 Hz and for the frequencies greater than 4 Hz. This may be due to the multiple scattering effect of the medium. The outcome of this study is expected to be useful for the estimation of source parameters and near-source simulation of earthquake ground motion, which in turn are required in the seismic hazard assessment of a region.  相似文献   

8.
Let {Y, Y i , −∞ < i < ∞} be a doubly infinite sequence of identically distributed and asymptotically linear negative quadrant dependence random variables, {a i , −∞ < i < ∞} an absolutely summable sequence of real numbers. We are inspired by Wang et al. (Econometric Theory 18:119–139, 2002) and Salvadori (Stoch Environ Res Risk Assess 17:116–140, 2003). And Salvadori (Stoch Environ Res Risk Assess 17:116–140, 2003) have obtained Linear combinations of order statistics to estimate the quantiles of generalized pareto and extreme values distributions. In this paper, we prove the complete convergence of under some suitable conditions. The results obtained improve and generalize the results of Li et al. (1992) and Zhang (1996). The results obtained extend those for negative associated sequences and ρ*-mixing sequences. CIC Number O211, AMS (2000) Subject Classification 60F15, 60G50 Research supported by National Natural Science Foundation of China  相似文献   

9.
10.
The seismic quality factor (Q c) and the attenuation coefficient (δ) in the earth’s crust in southwest (SW) Anatolia are estimated by using the coda wave method based on the decrease of coda wave amplitude by time on the seismogram. The quality factor Q o, the value of Q c at 1 Hz, and its frequency dependency η are determined from this method depending on the attenuation properties of scattered coda waves. δ is determined from the observations of amplitude variations of seismic waves. In applying the coda wave method, firstly, a type curve representing the average pattern of the individual coda decay curves for 0.75, 1.5, 3.0, 6.0, 12.0, and 24.0 Hz values was estimated. Secondly, lateral variation of coda Q and the attenuation coefficients for three main tectonic patterns are estimated. The shape of the type curve is controlled by the scattering and attenuation in the crustal volume sampled by the coda waves. The Q o and η values vary from 30 to 180 and from 0.55 to 1.25, respectively for SW Anatolia. In SW Anatolia, coda Qf relation is described by and δ = 0.008 km−1. These results are expected to help in understanding the degree of tectonic complexity of the crust in SW Anatolia.  相似文献   

11.
Based on the daily turbulent heat fluxes and related meteorological variables datasets (1985–2006) from Objectively Analyzed air-sea Fluxes (OAFlux) Project of Woods Hole Oceanographic Institution (WHOI), characteristics of low-frequency oscillation intensity of air-sea turbulent heat fluxes over the northwest Pacific are analyzed by linear perturbation method and correlation analysis. It can be concluded that: 1) the distribution of low-frequency oscillation intensity of latent heat flux (LHF) over the northwest Pacific is mainly affected by that of low-frequency oscillation intensity of anomalous air-sea humidity gradient (Δq′) as well as mean air-sea humidity gradient (), while the distribution of low-frequency oscillation intensity of sensible heat flux (SHF) is mainly affected by that of low-frequency oscillation intensity of anomalous air-sea temperature gradient (ΔT′). 2) The low-frequency oscillation of turbulent heat fluxes over the northwest Pacific is the strongest in winter and the weakest in summer. And the seasonal transition of low-frequency oscillation intensity of LHF is jointly influenced by those of low-frequency oscillation intensity of Δq′, low-frequency oscillation intensity of anomalous wind speed (U′), and mean wind speed (Ū), while the seasonal transition of low-frequency oscillation intensity of SHF is mainly influenced by those of low-frequency oscillation intensity of ΔT′ and Ū. 3) Over the tropical west Pacific and sea areas north of 20°N, the low-frequency oscillation of LHF (SHF) is mainly influenced by atmospheric variables q a ′ (T a ′) and U′, indicating an oceanic response to overlying atmospheric forcing. In contrast, over the tropical eastern and central Pacific south of 20°N, q s ′ (T s ′) also greatly influences the low-frequency oscillation of LHF (SHF). Supported by National Natural Science Foundation of China (Grant No. 40675028) and National Basic Research Program of China (Grant No. 2006CB403600)  相似文献   

12.
Receiver function study in northern Sumatra and the Malaysian peninsula   总被引:1,自引:0,他引:1  
In this receiver function study, we investigate the structure of the crust beneath six seismic broadband stations close to the Sunda Arc formed by subduction of the Indo-Australian under the Sunda plate. We apply three different methods to analyse receiver functions at single stations. A recently developed algorithm determines absolute shear-wave velocities from observed frequency-dependent apparent incidence angles of P waves. Using waveform inversion of receiver functions and a modified Zhu and Kanamori algorithm, properties of discontinuities such as depth, velocity contrast, and sharpness are determined. The combination of the methods leads to robust results. The approach is validated by synthetic tests. Stations located on Malaysia show high-shear-wave velocities (V S) near the surface in the range of 3.4–3.6 km s − 1 attributed to crystalline rocks and 3.6–4.0 km s − 1 in the lower crust. Upper and lower crust are clearly separated, the Moho is found at normal depths of 30–34 km where it forms a sharp discontinuity at station KUM or a gradient at stations IPM and KOM. For stations close to the subduction zone (BSI, GSI and PSI) complexity within the crust is high. Near the surface low V S of 2.6–2.9 km s − 1 indicate sediment layers. High V S of 4.2 km s − 1 are found at depth greater than 6 and 2 km at BSI and PSI, respectively. There, the Moho is located at 37 and 40 km depth. At station GSI, situated closest to the trench, the subducting slab is imaged as a north-east dipping structure separated from the sediment layer by a 10 km wide gradient in V S between 10 and 20 km depth. Within the subducting slab V S ≈ 4.7 km s − 1. At station BSI, the subducting slab is found at depth between 90 and 110 km dipping 20° ± 8° in approximately N 60° E. A velocity increase in similar depth is indicated at station PSI, however no evidence for a dipping layer is found.  相似文献   

13.
The conditions under which two magmas can become mixed within a rising magma batch are investigated by scaling analyses and fluid-dynamical experiments. The results of scaling analyses show that the fluid behaviours in a squeezed conduit are determined mainly by the dimensionless number where 1 is the viscosity of the fluid, U is the velocity, g is the acceleration due to gravity, is the density difference between the two fluids, and R is the radius of the tube. The parameter I represents a balance between the viscous effects in the uppermost magma which prevent it from being moved off the conduit walls, and the buoyancy forces which tend to keep the interface horizontal. The experiments are carried out using fluid pairs of various density and viscosity contrasts in a squeezed vinyl tube. They show that overturning of the initial density stratification and mixing occur when I>order 10-1; the two fluids remain stratified when I 10-3. Transitional states are observed when 10-3<I<10-1. These results are nearly independent of Reynolds number and viscosity ratio in the range of and Re 1<300. Applying these results to magmas shows that silicic to intermediate magmas overlying mafic magma will be prone to mixing in a rising magma batch. This mechanism can explain some occurrences of small-volume mixed lava flows.  相似文献   

14.
Zusammenfassung Obwohl Erdstrombeobachtungen fast ebenso weit zurückreichen wie erdmagnetische Messungen, bestehen noch manche Diskrepanzen in der Deutung der Zusammenh?nge. Wie Beispiele von Beobachtungen und experimentelle Untersuchungen zeigen, kann wenigstens bei kurzen Elektrodenentfernungen (2 km und weniger) durchweg eine gute übereinstimmung der Erdstromphase mit der Phase der Derivierten der senkrecht dazu auftretenden magnetischen Variation festgestellt werden. Bei sehr grossen Elektrodenabst?nden besteht dagegen meist eine übereinstimmung mit der Phase der magnetischen Variation selbst. Es besteht somit ein Phasenwinkelbereich von 0 bis π/2. Ein Grenzphasenwinkel von π/4 bei sehr kurzen Perioden kann dagegen nicht beobachtet werden. Es besteht kein Zweifel, dass die an den Elektroden gemessene Spannungsdifferenz noch eine Funktion der elektrischen Feldst?rken vor und hinter dem Messbereich ist. Deshalb k?nnen nur Leitwerts-Betrachtungen zu einem Resultat führen, das den Beobachtungen am besten entspricht. Ohne die Annahme geschlossener Erdstromkreise k?nnte weder die Azimutabh?ngigkeit der Erdstromamplituden an vielen Orten noch die magnetische Rückwirkung der Erdstr?me erkl?rt werden. Empirisch wurde eine Aenderung des terrestrischen Widerstandes mit √ω (mit ω als Kreisfrequenz) festgestellt. Da Anomalien im ΔZ- und ΔH- Variationsfeld besonders bei Baist?rungen stark azimutabh?ngig sind, muss als Ursache ein Leitf?higkeitsgradient normal zur induzierten EMK als wahrscheinlicher gelten als eine h?her oder minder leitf?hige Schicht im Untergrund. Im letzten Fall würde keine Azimutabh?ngigkeit auftreten. Es werden Strommodelle für verschiedene λ-Profile mit dem quadratischen Ansatz λ(x)=(b 0+b 1 x km+b 2 x 2 km ) λ0 berechnet und die Koeffizienten nach der Methode der kleinsten Quadrate bestimmt. Bei der ΔZ-Anomalie in Japan resultiert bei nur einer Tiefe von 0.5 km eine ?λ-Einsattelung? mit dem Minimum über der Westküste Japans. Pro Beobachtung ergibt sich ein mittlerer Fehler von ±3.2 γ im günstigsten Fall. Für die ΔH- und ΔZ-Anomalie im Raume von Scheessel resultiert aus einer grossen Zahl von Ausgleichungen eine λ-Zunahme für diesen Raum um den zehnfachen Betrag gegenüber der Umgebung bei einer mittleren Querschnittstiefe von 30 km. Auch die Durchrechnung von Beispielen bis 100 km Tiefe ergab keinen besseren mittleren Fehler, der für das 30 km-Beispiel in ΔH und ΔZ ±10.8 γ betr?gt. Die Erdstromkomponenten k?nnen azimutabh?ngig sein, ohne dass ein λ-Gradient besteht. Eine magnetische Rückwirkung auf dieZ-Komponente tritt nicht auf, wenn die Stromlinien nach verschiedenen Richtungen zwar beliebige Dichte, aber ?quidistante Lage zueinander haben.
Summary Although the observations of earth-currents are covering the same period of time as the measurings of magnetic fields, it is the opinion ofW. J. Rooney andO. H. Gish that some discrepances are still existing regarding the interpretation of the relations between earth-currents and earth-magnetic variations. According to previous tests, a good conformity of earth-magnetic variations with the derivates of the magnetic component, perpendicular to same, will always be confirmed, at least so in case the distances of electrodes are but short ones. Proof for this fact was also found by proper experiments. But since in most cases of great distances of electrodes conformity with the variations of the normal, magnetic components themselves could be ascertained, a free scope of π/2 is given for the angle of phases, as formed by the earth-current and the normal, magnetic component, whereas it is impossible to discover a limited phase-angle of π/4 in case of short periods. Further it can be shown that the voltage-difference, as measured at the electrodes is too a function of the electric-field, before and behind the range of the measures. Thus it appears that not only the conductivities of the subsoil are of some importance within the reach of measurements, but also the total terrestrial resistance which has to be overcome by the earth-currents. An increase of the terrestrial resistance with √ω can be established empirically. The magnetic reaction of the earth-currents cannot be postulated, except if based on the standpoint of a closed circuit. Since all anomalies. known up to date depend much on the azimut this situation is, in all probability, just caused by the gradient of conductivity, normal to the induced EMF. Models of currents for various profils with the quadratic development: λ(x)=(b 0+b 1 x km +b 2 x 2 km ) λ0 are calculated, and the coefficients will be fixed according to the method of minimized squares. As far as the anomaly in Japan is concerned, its result is a minimum of λ above Japan’s West-coast, to a depth of only 0.5 km (=0.3 miles), and for each station an average error amounting to ±3.2γ. For the anomaly in the area about Scheessel (Northern Germany) a great number of respective calculations show an increase of andZ i.e. for this space the tenfold amount, in comparision with northern and southern environs, and this into a depth of 30 km (17 m), in the average. Even the checking of tests, covering an area up to a depth of 100 km (=60 m) produced no better results as to the average errors (±10.8 γ). Dependence of the earth-currents upon azimut does not presuppose any gradient, and this means that the prevailing of the one or other direction, the current is taking, will not condition an anomaly in ΔZ.


Dr.K. Burkhart, Erdmagnetisches Observatorium,Fürstenfeldbruck, Obb. (West-Deutschland).  相似文献   

15.
This study combined water- and sediment flux measurements with mass balances of dissolved gas and inorganic matter to determine the importance of pelagic and benthic processes for whole-system metabolism in a eutrophic fluvial lake. Mass balances of dissolved O2, inorganic carbon (DIC), nitrogen (DIN), phosphorous (SRP), particulate N (PN) and P (PP) and Chl a were calculated at a nearly monthly frequency by means of repeated sampling at the lake inlet and outlet. Simultaneously, benthic fluxes of gas and nutrients, including denitrification rates, and the biomass of the dominant pleustophyte (Trapa natans) were measured, and fluxes of O2 and CO2 across the water–atmosphere interface were estimated from diel changes in outlet concentrations. On an annual scale, Middle Lake exhibited CO2 supersaturation, averaging 313% (range 86–562%), but was autotrophic with a net O2 production (6.35 ± 2.05 mol m−2 y−1), DIC consumption (−31.18 ± 18.77 mol m−2 y−1) and net export of Chl a downstream (8.38 ± 0.95 mol C m−2 y−1). Phytoplankton was the main driver of Middle Lake metabolism, with a net primary production estimated at 33.24 mol O2 m−2 y−1, corresponding to a sequestration of 4.18 and 0.26 mol m−2 y−1 of N and P, respectively. At peak biomass, T. natans covered about 18% of Middle Lake’s surface and fixed 2.46, 0.17 and 0.02 mol m−2 of C, N and P, respectively. Surficial sediments were a sink for O2 (−14.47 ± 0.65 mol O2 m−2 y−1) and a source of DIC and NH4 + (18.84 ± 2.80 mol DIC m−2 y−1 and 0.83 ± 0.16 mol NH4 + m−2 y−1), and dissipated nitrate via denitrification (1.44 ± 0.11 mol NO3  m−2 y−1). Overall, nutrient uptake by primary producers and regeneration from sediments were a minor fraction of external loads. This work suggests that the creation of fluvial lakes can produce net autotrophic systems, with elevated rates of phytoplanktonic primary production, largely sustained by allochtonous nutrient inputs. These hypereutrophic aquatic bodies are net C sinks, although they simultaneously release CO2 to the atmosphere.  相似文献   

16.
The Raman spectrograms of hydrocarbon standard samples show that: (1) the Raman spectrogram of normal paraffin has very strong peaks of methyl and methylene (from 2700 cm-1 to 2970 cm-1); (2) branch methyl has the particular peak of 748 cm-1±; (3) six cyclic has the particular peak of 804 cm-1±; (4) phenyl has two particular peaks of 988 cm-1± and 3058 cm-1± and the 988 cm-1± peak is stronger than the 3058 cm-1± peak; and (5) hexene has three alkenyl spectrum peaks of 1294 cm-1±, 1635 cm-1± and 2996 cm-1±, with the 1635 cm-1± peak being the strongest, showing that the number of carbon in hy-drocarbon does not affect its Raman spectrogram, and the hydrocarbon molecular structure and base groups affect its Raman spectrogram, the same hydrocarbons (such as normal paraffin) have the same Raman spectrogram; the types (such as CH4, C2H6, C3H8) and the content of hydrocarbon in oil inclu-sions are not estimated by their characteristic Raman peaks. According to the Raman spectrograms of hydrocarbon compositions, the Raman spectrogram of hydrocarbon inclusion can be divided into five types: saturated hydrocarbon Raman spectrogram, fluoresce Raman spectrogram, saturated hydro-carbon bitumen Raman spectrogram, bitumen Raman spectrogram, and ethane Raman spectrogram. And according to the characteristics of Raman spectrogram, hydrocarbon inclusions can be divided into five types: saturated hydrocarbon inclusion, less saturated hydrocarbon (oil or gas) inclusion, saturated hydrocarbon bitumen inclusion, bitumen inclusion, and methane water inclusion.  相似文献   

17.
OnsomeproblemsofseismiccrustalphaseHuan-ChengGE(葛焕称)(SeismologicalBureauofJiangsuProvince,Nanjing210014,China)Abstract:Inthis...  相似文献   

18.
Generous statistical tests   总被引:1,自引:1,他引:0  
A common statistical problem is deciding which of two possible sources, A and B, of a contaminant is most likely the actual source. The situation considered here, based on an actual problem of polychlorinated biphenyl contamination discussed below, is one in which the data strongly supports the hypothesis that source A is responsible. The problem approach here is twofold: One, accurately estimating this extreme probability. Two, since the statistics involved will be used in a legal setting, estimating the extreme probability in such a way as to be as generous as is possible toward the defendant’s claim that the other site B could be responsible; thereby leaving little room for argument when this assertion is shown to be highly unlikely. The statistical testing for this problem is modeled by random variables {X i } and the corresponding sample mean the problem considered is providing a bound ɛ for which for a given number a 0. Under the hypothesis that the random variables {X i } satisfy E(X i ) ≤ μ, for some 0  < μ < 1, statistical tests are given, described as “generous”, because ɛ is maximized. The intent is to be able to reject the hypothesis that a 0 is a value of the sample mean while eliminating any possible objections to the model distributions chosen for the {X i } by choosing those distributions which maximize the value of ɛ for the test used.  相似文献   

19.
An inversion of site response and Lg attenuation using Lg waveform   总被引:1,自引:0,他引:1  
Based on spectral ratio method, a joint inversion method was used to obtain parameters of Lg wave attenuation and site response. The inversion method allows simple and direct (two-parameter) determination of Lg wave attenua- tion and site response from sparse spectral data, which are not affected by radiation pattern factor and different response of same instrument after geometrical spreading. The method was used successfully for estimating site re- sponse of stations of Zhejiang Seismic Network and measuring Lg wave attenuation. The study is based on 20 earth- quakes occurred in northeast of Taiwan with magnitude MS5.0~6.7 and 960 seismic wave records from 16 stations in Zhejiang area from 2002 to 2005. The parameters of site response and Lg attenuation were calculated with a fre- quency interval of 0.2 Hz in the range of 0.5 Hz to 10 Hz. Lg wave attenuation coefficient corresponding to U-D, E-W and N-S components are γ ( f )=0.00175 f 0.43485, γ ( f )=0.00145f 0.48467 and γ ( f )=0.0021f 0.41241, respectively. It is found that the site response is component-independent. It is also found that the site response of QIY station is significant above the frequency of 1.5 Hz, and that the site response of NIB station is low for most frequency  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号