首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The noradrenergic system, driven by locus coeruleus (LC) activation, plays a key role in the regulating and directing of changes in hippocampal synaptic efficacy. The LC releases noradrenaline in response to novel experience and LC activation leads to an enhancement of hippocampus‐based learning, and facilitates synaptic plasticity in the form of long‐term depression (LTD) and long‐term potentiation (LTP) that occur in association with spatial learning. The predominant receptor for mediating these effects is the β‐adrenoreceptor. Interestingly, the dependency of synaptic plasticity on this receptor is different in the hippocampal subfields whereby in the CA1 in vivo, LTP, but not LTD requires β‐adrenoreceptor activation, whereas in the mossy fiber synapse LTP and LTD do not depend on this receptor. By contrast, synaptic plasticity that is facilitated by spatial learning is highly dependent on β‐adrenoreceptor activation in both hippocampal subfields. Here, we explored whether LTP induced by perforant‐path (pp) stimulation in vivo or that is facilitated by spatial learning depends on β‐adrenoreceptors. We found that under both LTP conditions, antagonising the receptors disabled the persistence of LTP. β‐adrenoreceptor‐antagonism also prevented spatial learning. Strikingly, activation of the LC before high‐frequency stimulation (HFS) of the pp prevented short‐term potentiation but not LTP, and LC stimulation after pp‐HFS‐induced depotentiation of LTP. This depotentiation was prevented by β‐adrenoreceptor‐antagonism. These data suggest that β‐adrenoreceptor‐activation, resulting from noradrenaline release from the LC during enhanced arousal and learning, comprises a mechanism whereby the duration and degree of LTP is regulated and fine tuned. This may serve to optimize the creation of a spatial memory engram by means of LTP and LTD. This process can be expected to support the special role of the dentate gyrus as a crucial subregional locus for detecting and processing novelty within the hippocampus. © 2015 The Authors Hippocampus Published by Wiley Periodicals, Inc.  相似文献   

2.
Addictive drugs modulate synaptic transmission in the meso‐corticolimbic system by hijacking normal adaptive forms of experience‐dependent synaptic plasticity. Psychostimulants such as METH have been shown to affect hippocampal synaptic plasticity, albeit with a less understood synaptic mechanism. METH is one of the most addictive drugs that elicit long‐term alterations in the synaptic plasticity in brain areas involved in reinforcement learning and reward processing. Dopamine transporter (DAT) is one of the main targets of METH. As a substrate for DAT, METH decreases dopamine uptake and increases dopamine efflux via the transporter in the target brain regions such as nucleus accumbens (NAc) and hippocampus. Due to cross talk between NAc and hippocampus, stimulation of NAc has been shown to alter hippocampal plasticity. In this study, we tested the hypothesis that manipulation of glutamatergic and GABA‐ergic systems in the shell‐NAc modulates METH‐induced enhancement of long term potentiation (LTP) in the hippocampus. Rats treated with METH (four injections of 5 mg/kg) exhibited enhanced LTP as compared to saline‐treated animals. Intra‐NAc infusion of muscimol (GABA receptor agonist) decreased METH‐induced enhancement of dentate gyrus (DG)‐LTP, while infusion of AP5 (NMDA receptor antagonist) prevented METH‐induced enhancement of LTP. These data support the interpretation that reducing NAc activity can ameliorate METH‐induced hippocampal LTP through a hippocampus‐NAc‐VTA circuit loop. Synapse 70:325–335, 2016 . © 2016 Wiley Periodicals, Inc.  相似文献   

3.
N‐methyl‐d ‐aspartic acid (NMDA) receptor‐dependent long‐term potentiation (LTP) at the thalamus–lateral amygdala (T‐LA) synapses is the basis for acquisition of auditory fear memory. However, the role of the NMDA receptor NR2B subunit in synaptic plasticity at T‐LA synapses remains speculative. In the present study, using transgenic mice with forebrain‐specific overexpression of the NR2B subunit, we have observed that forebrain NR2B overexpression results in enhanced LTP but does not alter long‐term depression (LTD) at the T‐LA synapses in transgenic mice. To elucidate the cellular mechanisms underlying enhanced LTP at T‐LA synapses in these transgenic mice, AMPA and NMDA receptor‐mediated postsynaptic currents have been measured. The data show a marked increasing in the amplitude and decay time of NMDA receptor‐mediated currents in these transgenic mice. Consistent with enhanced LTP at T‐LA synapses, NR2B‐transgenic mice exhibit better performance in the acquisition of auditory fear memory than wild‐type littermates. Our results demonstrate that up‐regulation of NR2B expression facilitates acquisition of auditory cued fear memory and enhances LTP at T‐LA synapses.  相似文献   

4.
Long‐term potentiation (LTP) is accompanied by increased spine density and dimensions triggered by signaling cascades involving activation of the neurotrophin brain‐derived neurotrophic factor (BDNF) and cytoskeleton remodeling. Chemically‐induced long‐term potentiation (c‐LTP) is a widely used cellular model of plasticity, whose effects on spines have been poorly investigated. We induced c‐LTP by bath‐application of the N‐methyl‐d ‐aspartate receptor (NMDAR) coagonist glycine or by the K+ channel blocker tetraethylammonium (TEA) chloride in cultured hippocampal neurons and compared the changes in dendritic spines induced by the two models of c‐LTP and determined if they depend on BDNF/TrkB signaling. We found that both TEA and glycine induced a significant increase in stubby spine density in primary and secondary apical dendrites, whereas a specific increase in mushroom spine density was observed upon TEA application only in primary dendrites. Both TEA and glycine increased BDNF levels and the blockade of tropomyosin‐receptor‐kinase receptors (TrkRs) by the nonselective tyrosine kinase inhibitor K‐252a or the selective allosteric TrkB receptor (TrkBR) inhibitor ANA‐12, abolished the c‐LTP‐induced increase in spine density. Surprisingly, a blockade of TrkBRs did not change basal spontaneous glutamatergic transmission but completely changed the synaptic plasticity induced by c‐LTP, provoking a shift from a long‐term increase to a long‐term depression (LTD) in miniature excitatory postsynaptic current (mEPSC) frequency. In conclusion, these results suggest that BDNF/TrkB signaling is necessary for c‐LTP‐induced plasticity in hippocampal neurons and its blockade leads to a switch of c‐LTP into chemical‐LTD (c‐LTD). © 2013 Wiley Periodicals, Inc.  相似文献   

5.
Granulocyte colony‐stimulating factor (G‐CSF) is a hematopoietic cytokine that also possesses neurotrophic and antiapoptotic properties. G‐CSF has been reported to decrease amyloid burden significantly, promote hippocampal neurogenesis, and improve spatial learning in a mouse model of Alzheimer's disease. To understand better the effects of G‐CSF on hippocampal‐dependent learning, the present study focused on electrophysiological correlates of neuroplasticity, long‐term potentiation (LTP), and long‐term depression (LTD). Two cohorts of transgenic APP/PS1 mice, with or without prior bone marrow transplantation from Tg GFP mice, were treated in vivo for 2 weeks with G‐CSF or vehicle. After completion of the treatments, hippocampal slices were prepared for electrophysiological studies of LTP and LTD. LTP was induced and maintained in both G‐CSF‐treated and vehicle‐treated groups of Tg APP/PS1. In contrast, LTD could not be induced in vehicle‐treated Tg APP/PS1 mice, but G‐CSF treatment restored LTD. The LTP and LTD results obtained from the cohort of bone marrow‐grafted Tg APP/PS1 mice did not differ from those from nongrafted Tg APP/PS1 mice. The mechanism by which G‐CSF restores LTD is not known, but it is possible that its capacity to reduce amyloid plaques results in increased soluble oligomers of amyloid‐β (A‐β), which in turn may facilitate LTD. This mechanism would be consistent with the recent report that soluble A‐β oligomers promote LTD in hippocampal slices. © 2014 Wiley Periodicals, Inc.  相似文献   

6.
Heterosynaptic long‐term depression (hLTD) at untetanized synapses accompanying the induction of long‐term potentiation (LTP) spatially sharpens the activity‐induced synaptic potentiation; however, the underlying mechanism remains unclear. We found that hLTD in the hippocampal CA1 region is caused by stimulation‐induced ATP release from astrocytes that suppresses transmitter release from untetanized synaptic terminals via activation of P2Y receptors. Selective stimulation of astrocytes expressing channelrhodopsin‐2, a light‐gated cation channel permeable to Ca2+, resulted in LTD of synapses on neighboring neurons. This synaptic modification required Ca2+ elevation in astrocytes and activation of P2Y receptors, but not N‐methyl‐D ‐aspartate receptors. Furthermore, blocking P2Y receptors or buffering astrocyte intracellular Ca2+ at a low level prevented hLTD without affecting LTP induced by SC stimulation. Thus, astrocyte activation is both necessary and sufficient for mediating hLTD accompanying LTP induction, strongly supporting the notion that astrocytes actively participate in activity‐dependent synaptic plasticity of neural circuits. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
An inadequate supply of oxygen in the brain may lead to an inflammatory response through neuronal and glial cells that can result in neuronal damage. Tumor necrosis factor‐α (TNF‐α) is a proinflammatory cytokine that is released during acute hypoxia and can have neurotoxic or neuroprotective effects in the brain. Both TNF‐α and interleukin‐1β (IL‐1β) have been shown by a number of research groups to alter synaptic scaling and also to inhibit long‐term potentiation (LTP) in the hippocampus when induced by specific high‐frequency stimulation (HFS) protocols. This study examines the effects of TNF‐α on synaptic transmission and plasticity in hippocampal slices after acute hypoxia using two HFS protocols. Field excitatory postsynaptic potentials were elicited in the medial perforant pathway of the dentate gyrus. Exogenous TNF‐α (5 ng/ml) attenuated LTP induced by theta burst stimulation but had no effect on LTP induced by a more prolonged HFS. Pretreatment with lipopolysaccharide (100 ng/ml) or TNF‐α but not IL‐1β (4 ng/ml) prior to a 30‐min hypoxic insult resulted in a significant enhancement of LTP post hypoxia when induced by the HFS. Anti‐TNF, 3,6′‐dithiothalidomide (a TNF‐α synthesis inhibitor), and SB203580 (a p38 MAPK inhibitor) significantly reduced this effect. These results indicate an important modulatory role for elevated TNF‐α levels on LTP in the hippocampus after an acute hypoxic event. © 2015 Wiley Periodicals, Inc.  相似文献   

8.
Cerebellar parallel fiber–Purkinje cell (PF–PC) long‐term synaptic plasticity is important for the formation and stability of cerebellar neuronal circuits, and provides substrates for motor learning and memory. We previously reported both presynaptic long‐term potentiation (LTP) and long‐term depression (LTD) in cerebellar PF–PC synapses in vitro. However, the expression and mechanisms of cerebellar PF–PC synaptic plasticity in the cerebellar cortex in vivo are poorly understood. In the present study, we studied the properties of 4 Hz stimulation‐induced PF–PC presynaptic long‐term plasticity using in vivo the whole‐cell patch‐clamp recording technique and pharmacological methods in urethane‐anesthetised mice. Our results demonstrated that 4 Hz PF stimulation induced presynaptic LTD of PF–PC synaptic transmission in the intact cerebellar cortex in living mice. The PF–PC presynaptic LTD was attenuated by either the N‐methyl‐D‐aspartate receptor antagonist, D‐aminophosphonovaleric acid, or the group 1 metabotropic glutamate receptor antagonist, JNJ16259685, and was abolished by combined D‐aminophosphonovaleric acid and JNJ16259685, but enhanced by inhibition of nitric oxide synthase. Blockade of cannabinoid type 1 receptor activity abolished the PF–PC LTD and revealed a presynaptic PF–PC LTP. These data indicate that both endocannabinoids and nitric oxide synthase are involved in the 4 Hz stimulation‐induced PF–PC presynaptic plasticity, but the endocannabinoid‐dependent PF–PC presynaptic LTD masked the nitric oxide‐mediated PF–PC presynaptic LTP in the cerebellar cortex in urethane‐anesthetised mice.  相似文献   

9.
Encoding of novel information has been proposed to rely on the time‐locked release of dopamine in the hippocampal formation during novelty detection. However, the site of novelty detection in the hippocampus remains a matter of debate. According to current models, the CA1 and the subiculum act as detectors and distributors of novel sensory information. Although most CA1 pyramidal neurons exhibit regular‐spiking behavior, the majority of subicular pyramidal neurons fire high‐frequency bursts of action potentials. The present study investigates the efficacy of dopamine D1/D5 receptor activation to facilitate the induction of activity‐dependent long‐term potentiation (LTP) in rat CA1 regular‐spiking and subicular burst‐spiking pyramidal cells. Using a weak stimulation protocol, set at a level subthreshold for the induction of LTP, we show that activation of D1/D5 receptors for 5–10 min facilitates LTP in subicular burst‐spiking neurons but not in CA1 neurons. The results demonstrate that D1/D5 receptor‐facilitated LTP is NMDA receptor‐dependent, and requires the activation of protein kinase A. In addition, the D1/D5 receptor‐facilitated LTP is shown to be presynaptically expressed and relies on presynaptic Ca2+ signaling. The phenomenon of dopamine‐induced facilitation of presynaptic NMDA receptor‐dependent LTP in subicular burst‐spiking pyramidal cells is in accordance with observations of the time‐locked release of dopamine during novelty detection in this brain region, and reveals an intriguing mechanism for the encoding of hippocampal output information.  相似文献   

10.
The hippocampal synapses display conspicuous ability for long‐term plasticity which is thought to underlie learning and memory. Growing evidence shows that this ability differs along the long axis of the hippocampus, with the ventral CA1 hippocampal synapses displaying remarkably lower ability for long‐term potentiation (LTP) compared with their dorsal counterpart when activated with high‐frequency stimulation. Here, we show that low frequency, 10 Hz stimulation induced LTP more reliably in dorsal than in ventral CA1 field. Blockade of alpha5 subunit‐containing GABAA receptors eliminated the difference between dorsal and ventral hippocampus. We propose that α5GABAA receptor‐mediated activity plays a crucial role in regulating the threshold for induction of LTP especially at the ventral CA1 hippocampal synapses. This might have important implications for the functional specialization along the hippocampus. Synapse, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

11.
We recently have found that an acute application of the neurosteroid pregnenolone sulfate (PREGS) at 50 μM to rat hippocampal slices induces a long‐lasting potentiation (LLPPREGS) via a sustained ERK2/CREB activation at perforant‐path/granule‐cell synapses in the dentate gyrus. This study is a follow up to investigate whether the expression of LLPPREGS influences subsequent frequency‐dependent synaptic plasticity. Conditioning electric stimuli (CS) at 0.1–200 Hz were given to the perforant‐path of rat hippocampal slices expressing LLPPREGS to induce long‐term potentiation (LTP) and long‐term depression (LTD). The largest LTP was induced at about 20 Hz‐CS, which is normally a subthreshold frequency, and the largest LTD at 0.5 Hz‐CS, resulting in a leftward‐shift of the LTP/LTD‐frequency curve. Furthermore, the level of LTP at 100 Hz‐CS was significantly attenuated to give band‐pass filter characteristics of LTP induction with a center frequency of about 20 Hz. The LTP induced by 20 Hz‐CS (termed 20 Hz‐LTP) was found to be postsynaptic origin and dependent on L‐type voltage‐gated calcium channel (L‐VGCC) but not on N‐methyl‐D ‐aspartate receptor (NMDAr). Moreover, the induction of 20 Hz‐LTP required a sustained activation of ERK2 that had been triggered by PREGS. In conclusion, the transient elevation of PREGS is suggested to induce a modulatory metaplasticity through a sustained activation of ERK2 in an L‐VGCC dependent manner. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
Electrophysiological recordings were used to investigate the role of the local synthesis of 17β‐estradiol (E2) and 5α‐dihydrotestosterone (DHT) on synaptic long‐term effects induced in the hippocampal CA1 region of male rat slices. Long‐term depression (LTD) and long‐term potentiation (LTP), induced by different stimulation patterns, were examined under the block of the DHT synthesis by finasteride (FIN), and the E2 synthesis by letrozole (LET). We used low frequency stimulation (LFS) for LTD, high frequency stimulation (HFS) for LTP, and intermediate patterns differing in duration or frequency. We found that FIN reverted the LFS‐LTD into LTP and enhanced LTP induced by intermediate and HFSs. These effects were abolished by exogenous DHT at concentration higher than the basal one, suggesting a stimulus dependent increase in DHT availability. No effect on the synaptic responses was observed giving DHT alone. Moreover, we found that the inhibition of E2 synthesis influenced the HFS‐LTP by reducing its amplitude, and the exogenous E2 either enhanced HFS‐LTP or reverted the LFS‐LTD into LTP. The equivalence of the E2 concentration for rescuing the full HFS‐LTP under LET and reverting the LFS‐LTD into LTP suggests an enhancement of the endogenous E2 availability that is specifically driven by the HFS. No effect of FIN or LET was observed on the responses to stimuli that did not induce either LTD or LTP. This study provides evidence that the E2 and DHT availability combined with specific stimulation patterns is determinant for the sign and amplitude of the long‐term effects.  相似文献   

13.
SHANK3 is a postsynaptic structural protein localized at excitatory glutamatergic synapses in which deletions and mutations have been implicated in patients with autism spectrum disorders (ASD). The expression of Shank3 ASD mutations causes impairments in ionotropic glutamate receptor‐mediated synaptic responses in neurons, which is thought to underlie ASD‐related behaviors, thereby indicating glutamatergic synaptopathy as one of the major pathogenic mechanisms. However, little is known about the functional consequences of ASD‐associated mutations in Shank3 on another important set of glutamate receptors, group I metabotropic glutamate receptors (mGluRs). Here, we further assessed how Shank3 mutations identified in patients with ASD (one de novo InsG mutation and two inherited point mutations, R87C and R375C) disrupt group I mGluR (mGluR1 and mGluR5) expression and function. To identify potential isoform‐specific deficits induced by ASD‐associated Shank3 mutations on group I mGluRs, we surface immunolabeled mGluR1 and mGluR5 independently. We also induced mGluR‐dependent synaptic plasticity (R,S‐3,5‐dihydroxyphenylglycine [DHPG]‐induced long‐term depression [LTD]) as well as N‐methyl‐D‐aspartate receptor (NMDAR)‐dependent LTD. ASD‐associated mutations in Shank3 differentially interfered with the ability of cultured hippocampal neurons to express mGluR5 and mGluR1 at synapses. Intriguingly, all ASD Shank3 mutations impaired mGluR‐dependent LTD without altering NMDAR‐dependent LTD. Our data show that the specific perturbation in mGluR‐dependent synaptic plasticity occurs in neurons expressing ASD‐associated Shank3 mutations, which may underpin synaptic dysfunction and subsequent behavioral deficits in ASD.  相似文献   

14.
The effects of prepubertal castration on hippocampal CA3‐CA1 synaptic transmission and plasticity were studied at different ages in vitro. The field excitatory postsynaptic potentials (fEPSP) and population spikes (PS) were simultaneously recorded from stratum radiatum and stratum pylamidale of area CA1 following stimulation of Schaffer collaterals in slices taken from sham‐castrated and castrated rats at postnatal days (PND) 28, 35, 45, and 60. Castration had no effect on baseline responses at different ages except at PND 60 that a decrease in the fEPSP slope was seen. Prepubertal castration caused age‐specific changes in CA1‐long term potentiation (LTP) induction. The castration did decrease both fEPSP‐LTP and PS‐LTP at PND 35 but a decrease was seen only in PS‐LTP at PND 60. NMDA receptor antagonist AP5 (25 µM) completely blocked both fEPSP‐LTP and PS‐LTP at PND 60 and only PS‐LTP at PND 35 in both sham‐castrated and castrated groups. Although AP5 blocked fEPSP‐LTP at PND 35 in sham‐castrated group, it failed to inhibit fEPSP‐LTP at PND 35 in castrated one. These findings suggest that prepubertal castration causes the age‐dependent changes in CA1‐LTP induction, which might arise from alterations in the NMDA receptors. Synapse 67:235–244, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
The cognitive role of melanin‐concentrating hormone (MCH) neurons, a neuronal population located in the mammalian postero‐lateral hypothalamus sending projections to all cortical areas, remains poorly understood. Mainly activated during paradoxical sleep (PS), MCH neurons have been implicated in sleep regulation. The genetic deletion of the only known MCH receptor in rodent leads to an impairment of hippocampal dependent forms of memory and to an alteration of hippocampal long‐term synaptic plasticity. By using MCH/ataxin3 mice, a genetic model characterized by a selective deletion of MCH neurons in the adult, we investigated the role of MCH neurons in hippocampal synaptic plasticity and hippocampal‐dependent forms of memory. MCH/ataxin3 mice exhibited a deficit in the early part of both long‐term potentiation and depression in the CA1 area of the hippocampus. Post‐tetanic potentiation (PTP) was diminished while synaptic depression induced by repetitive stimulation was enhanced suggesting an alteration of pre‐synaptic forms of short‐term plasticity in these mice. Behaviorally, MCH/ataxin3 mice spent more time and showed a higher level of hesitation as compared to their controls in performing a short‐term memory T‐maze task, displayed retardation in acquiring a reference memory task in a Morris water maze, and showed a habituation deficit in an open field task. Deletion of MCH neurons could thus alter spatial short‐term memory by impairing short‐term plasticity in the hippocampus. Altogether, these findings could provide a cellular mechanism by which PS may facilitate memory encoding. Via MCH neuron activation, PS could prepare the day's learning by increasing and modulating short‐term synaptic plasticity in the hippocampus. © 2015 Wiley Periodicals, Inc.  相似文献   

16.
The precise timing of pre‐postsynaptic activity is vital for the induction of long‐term potentiation (LTP) or depression (LTD) at many central synapses. We show in synapses of rat CA1 pyramidal neurons in vitro that spike timing dependent plasticity (STDP) protocols that induce LTP at glutamatergic synapses can evoke LTD of inhibitory postsynaptic currents or STDP‐iLTD. The STDP‐iLTD requires a postsynaptic Ca2+ increase, a release of endocannabinoids (eCBs), the activation of type‐1 endocananabinoid receptors and presynaptic muscarinic receptors that mediate a decreased probability of GABA release. In contrast, the STDP‐iLTD is independent of the activation of nicotinic receptors, GABABRs and G protein‐coupled postsynaptic receptors at pyramidal neurons. We determine that the downregulation of presynaptic Cyclic adenosine monophosphate/protein Kinase A pathways is essential for the induction of STDP‐iLTD. These results suggest a novel mechanism by which the activation of cholinergic neurons and retrograde signaling by eCBs can modulate the efficacy of GABAergic synaptic transmission in ways that may contribute to information processing and storage in the hippocampus. © 2013 Wiley Periodicals, Inc.  相似文献   

17.
Although it is generally agreed that Aβ contributes to the pathogenesis of AD, its precise role in AD and the reason for the varying intensity and time of onset of the disease have not been elucidated. In addition to genetic factors, environmental issues such as stress may also play a critical role in the etiology of AD. This study examined the effect of chronic psychosocial stress in an at‐risk (treatment with a subpathogenic dose of Aβ; “subAβ”) rat model of AD on long‐term memory by three techniques: memory tests in the radial arm water maze, electrophysiological recordings of synaptic plasticity in anesthetized rats, and immunoblot analysis of learning‐ and long‐term memory‐related signaling molecules. Chronic psychosocial stress was induced using a rat intruder model. The subAβ rat model of AD was induced by continuous infusion of 160 pmol/day Aβ1–42 via a 14‐day i.c.v. osmotic pump. All tests showed that subAβ rats were not different from control rats. Result from behavioral tests and electrophysiological recordings showed that infusion of subAβ in chronically stressed rats (stress/subAβ group) caused significant impairment of cognitive functions and late‐phase long‐term potentiation (L‐LTP). Molecular analysis of various signaling molecules after expression of L‐LTP, revealed an increase in the levels of p‐CREB in control, stress, and subAβ rats, but not in the stress/subAβ rats. These findings suggest that the chronic stress‐induced molecular alteration may accelerate the impairment of cognition and synaptic plasticity in individuals “at‐risk” for AD. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
Hippocampal synaptic plasticity, in the form of long‐term potentiation (LTP) and long‐term depression (LTD), enables spatial memory formation, whereby LTP and LTD are likely to contribute different elements to the resulting spatial representation. Dopamine, released from the ventral tegmental area particularly under conditions of reward, acts on the hippocampus, and may specifically influence the encoding of information into long‐term memory. The dentate gyrus (DG), as the “gateway” to the hippocampus is likely to play an important role in this process. D1/D5 dopamine receptors are importantly involved in the regulation of synaptic plasticity thresholds in the CA1 region of the hippocampus and determine the direction of change in synaptic strength that occurs during novel spatial learning. Here, we explored whether D1/D5‐receptors influence LTD that is induced in the DG following patterned afferent stimulation of the perforant path of freely behaving adult rats, or influence LTD that occurs in association with spatial learning. We found that LTD that is induced by afferent stimulation, and LTD that is facilitated by learning about novel landmark configurations, were both prevented by D1/D5‐receptor antagonism, whereas agonist activation of the D1/D5‐receptor had no effect on basal tonus or short‐term depression. Other studies have reported that in the DG, D1/D5‐receptor agonism or antagonism do not affect LTP, but agonism prevents depotentiation. These findings suggest that the dopaminergic system, acting via D1/D5‐receptors, influences information gating by the DG and modulates the direction of change in synaptic strength that underlies information storage in this hippocampal substructure. Information encoded by robust forms of LTD is especially dependent on D1/D5‐receptor activation. Thus, dopamine acting on D1/D5‐receptors is likely to support specific experience‐dependent encoding, and may influence the content of hippocampal representations of experience. © 2014 The Authors. Hippocampus Published by Wiley Periodicals, Inc.  相似文献   

19.
Glycogen synthase kinase‐3 (GSK3), particularly the isoform GSK3β, has been implicated in a wide range of physiological systems and neurological disorders including Alzheimer's Disease. However, the functional importance of GSK3α has been largely untested. The multifunctionality of GSK3 limits its potential as a drug target because of inevitable side effects. Due to its greater expression in the CNS, GSK3β rather than GSK3α has also been assumed to be of primary importance in synaptic plasticity. Here, we investigate bidirectional long‐term synaptic plasticity in knockin mice with a point mutation in GSK3α or GSK3β that prevents their inhibitory regulation. We report that only the mutation in GSK3α affects long‐term potentiation (LTP) and depression (LTD). This stresses the importance of investigating isoform specificity for GSK3 in all systems and suggests that GSK3α should be investigated as a drug target in cognitive disorders including Alzheimer's Disease. © 2014 The Authors. Hippocampus Published by Wiley Periodicals, Inc.  相似文献   

20.
Amyloid β‐protein (Aβ) is thought to be responsible for the deficit of learning and memory in Alzheimer's disease (AD), possibly through interfering with synaptic plasticity in the brain. It has been reported that Aβ fragments suppress the long‐term potentiation (LTP) of synaptic transmission. However, it is unclear whether Aβ fragments can regulate long‐term depression (LTD), an equally important form of synaptic plasticity in the brain. The present study investigates the effects of Aβ fragments on LTD induced by low frequency stimulation (LFS) in the hippocampus in vivo. Our results showed that (1) prolonged 1–10 Hz of LFS all effectively elicited LTD, which could persist for at least 2 h and be reversed by high frequency stimulation (HFS); (2) the effectiveness of LTD induction depended mainly on the number of pulses but not the frequency of LFS; (3) pretreatment with Aβ fragment 25–35 (Aβ25–35, 12.5 and 25 nmol) did not change baseline field excitatory postsynaptic potentials but dose‐dependently potentiated LTD; (4) Aβ fragment 31–35 (Aβ31–35), a shorter Aβ fragment than Aβ25–35, also dose‐dependently strengthened LFS‐induced hippocampal LTD. Thus, the present study demonstrates the enhancement of hippocampal LTD by Aβ in in vivo condition. We propose that Aβ‐induced potentiation of LTD, together with the suppression of LTP, will result in the impairment of cognitive function of the brain. Synapse 63:206–214, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号