首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
滨海含软土夹层粉细砂地基高能级强夯加固试验研究   总被引:1,自引:0,他引:1  
滨海粉细砂场地地基常分布有软土夹层或淤泥包且地下水位较高,地基处理难度大。目前采用高能级强夯加固滨海粉细砂场地的工程案例较少。结合具体工程研究了某地下水位较高且含软土夹层的滨海粉细砂场地上开展的5、8、12、15MN·m能级强夯加固试验。除5MN·m能级强夯试验区外,其余试验区均先采取高能级点夯加固深层土体,然后采用中等能级点夯加固夯点间土,最后利用低能级满夯加固地基浅层。对比分析了夯沉量和强夯前后的旁压、静力触探测试数据,发现夯击7~8击后夯沉量变化明显减小,每遍的单点夯击击数宜控制在8~9;在有效加固深度范围内,土体的旁压模量和静力触探锥尖阻力均明显提升,高能级强夯能有效消除滨海粉细砂的液化势。试验场地内上述各个能级的有效加固深度分别为7.5、9、10.5、10m,在有效加固深度范围内,表征土体相对加固程度的提升系数沿深度大致呈直线下降。现场试验数据还表明,将地下水位降低到距地表以下2.5m有助于提高加固效果;软土夹层的存在会明显影响加固效果及限制有效加固深度的发展,因受软土夹层的影响,场地15MN·m能级强夯的有效加固深度明显偏小。建议在级配不良的滨海粉细砂场地上按照规范JGJ 79—2012中细颗粒土的标准来确定高能级强夯的有效加固深度。  相似文献   

2.
 为了研究强夯法加固煤矸石地基的加固效果,了解强夯过程中不同深度处动应力分布规律,测定不同夯击能的有效加固深度,进行室内模型试验研究。用DH5939动态应变仪采集不同夯击能、不同击数、不同测点位置煤矸石地基中的动应力。试验结果表明:单击夯沉量随夯击次数的增加而减小。在夯击次数相同情况下,单击夯击能越大,夯沉量也越大。在强夯作用下,动应力主要为单一的波峰,没有明显的第二波峰,作用时间极短,动应力达到峰值所需的时间明显小于衰减时间。沿夯锤不同深度的动应力达到峰值具有明显的时滞性,在同一深度,随着夯击能、夯击次数的增加,动应力也相应增加。另外,强夯后煤矸石地基的物理力学特性指标如压实度、黏聚力等较夯前有较大提高,夯击能越大,提高幅度越明显,夯击能相同时,距夯点位置越近,提高幅度越明显。满足实际工程需要的最佳夯击能约为3 000 kN•m,最佳夯击击数为7~9击。该成果不仅适用于强夯法处理煤矸石地基,对其他松散易碎介质如建筑渣土的强夯地基加固也有一定的参考价值。  相似文献   

3.
强夯法加固煤矸石地基动应力模型试验研究   总被引:3,自引:0,他引:3  
通过强夯法加固煤矸石地基物理模型试验,用 DH5939 动态应变仪完整地记录了强夯每一击作用下煤矸石地基中的 动应力 ,系统地研究了不同夯击能和夯击次数作用下不同深度煤矸石地基动应力的分布特征及其衰减规律。结果表明,在强夯冲击荷载作用下,动应力为单一的波峰,沿夯锤不同深度的动应力达到峰值具有明显的时滞性。强夯动应力在水平方向的衰减速度比竖直方向快,竖直方向的影响范围比平方向大。在相同的夯击能作用下,动应力峰值随深度衰减很快,近似呈负幂指数规律衰减。另外,对不同的测点,在夯击能一定的条件下,随着夯击次数的增加,有效加固范围内的动应力增加明显,但在 3 ~ 6 击后基本稳定。研究为精确模拟分析强夯加固机理提供了有效途径。  相似文献   

4.
魏瑶 《土工基础》2023,(3):463-467
强夯法具有操作简单、施工周期短、工艺简单等特点,已在国内外得到广泛应用。为进一步研究强夯法加固地基土效果,利用有限元软件模拟强夯施工过程,考虑夯锤及地基土弹塑性本构关系,分析了在不同的夯击能下,土体的竖向位移、动应力、速度、土体塑性区域变化规律。得出如下结论:(1)在冲击荷载下,土体发生弹塑性变形,土体塑性变形主要从夯锤向下呈一定角度扩散,呈苹果形分布,随着夯击时间增加,塑性变形区域也在逐渐增大;(2)土体竖向位移及动应力随深度逐渐衰减且在空间上呈椭圆形分布;(3)随着夯击能增加,土体加固效果也越好。  相似文献   

5.
本文以高能级强夯处理湿陷性黄土为对象,研究夯击工艺与地基土特性对其产生的影响,以具体工程为依托,以实际工程检测和数据分析为主要手段,研究得出,采用8000~16000kn·m单击夯击能的高能级强夯处理原状湿陷性土层的有效处理深度可达11~16m,土层的压缩模量可提高60~70%,地基承载力特征值可达230kPa。对土性变化较大的大厚度回填土采用高能级强夯处理结果欠佳。分析认为夯击能增加到一定程度后,地基土受土体本身性状及环境因素影响承载力增加有限。最后本文给出了该场地原状土高能级强夯有效加固深度修正系数,希望对同类工程提供参考。  相似文献   

6.
强夯动应力的量测及现场试验研究   总被引:11,自引:0,他引:11       下载免费PDF全文
结合常吉高速公路强夯补强加固路基工程,做了大型的现场试验。在试验路段布置了43个土压力盒,运用动态应变仪记录了强夯动应力的传播和衰减过程,并尝试用动应力的传播与衰减曲线说明冲击波在土体中的传播。试验结果表明:强夯对红砂岩填土路基的加固效果明显,强夯动应力也相当明显,强夯动应力在水平方向的衰减速度比竖直方向快,竖直方向的影响范围比水平方向大;强夯法加固地基的影响深度远大于有效深度;随着夯击次数的增加,有效加固范围内的动应力增加明显,但在3~5击后基本稳定;从动应力等值线图上也可分析出强夯作用时压缩波、剪切波、瑞利波的作用范围。  相似文献   

7.
高能级强夯法在处理湿陷性黄土地基中的应用   总被引:2,自引:0,他引:2  
马安刚 《建筑技术》2001,32(3):166-167
高能级强夯一般指每单击夯击能大于6000kN·m强夯 ,用其加固处理大厚度湿陷性黄土地基 ,对提高地基土强度和均匀性 ,消除湿陷性具有明显的效果。施工工艺和参数的选择对强夯效果影响很大。施工中对夯击裂缝和夯击能分配问题应认真处理  相似文献   

8.
为丰富堰塞坝开发利用理论,指导堰塞坝浅层密实加固处理工程,基于相似定律对堰塞坝料进行了不同能级的室内强夯模型试验,综合采用宏-细观方法分析了强夯能量引起的动应力发展和传播规律、内部变形规律、颗粒破碎和加固效果等。试验结果表明:随着夯击次数增加,由于堰塞坝料密实度提高、颗粒重排列、破碎及填充的叠合效应,夯锤有效加固范围内的动土压力峰值整体呈波动上升趋势。强夯过程中能量逐渐从表层传递到深层,同时强夯能量随深度具有较大的耗散,动应力峰值随深度呈现快速衰减的趋势。由于风化严重,强夯引起了明显的颗粒破碎现象。强夯对松散宽级配堰塞坝料的加固效果明显,不同能级强夯后其锥尖阻力大幅提高,但夯击能超过一定数值时,增大夯击能对加固效果提升有限。基于本次易贡堰塞坝料模型试验,最佳夯击能约为6000 kN·m。  相似文献   

9.
高能级强夯法是解决深厚杂填土地基承载力不足和工后沉降问题的重要工程手段之一。鉴于现有研究中对深厚杂填土地基的高能级强夯参数、夯实加固特征少有探讨,理论成果、工程经验不足,使杂填土在山区大型填方工程中的推广使用严重受限,以某高填方机场工程为依托,围绕厚层杂填土地基开展了多组现场高能级(12 000 kN·m)强夯试验,揭示了杂填土地基的强夯加固机理并结合多种现场检测试验对夯实效果、夯密特征进行了对比,为深厚杂填土地基强夯参数和夯实检验方法的选择指明了方向。结果表明:卵砾石-深厚杂填土地基在12 000 kN·m高能级强夯作用下,土性明显改善;在“主夯16-加固夯14-满夯5”单点夯击次数下浅表卵砾石层的夯实、整体地基土层均匀性的改良以及工程节支方面明显优于“主夯10-加固夯12-满夯3”强夯方案;存在最佳单点夯击次数,当夯击数超过这一数值时,额外的夯击对地基土性改良不利;杂填土地基由于成分复杂、空间高度不连续,现场波速试验不适用于此类地基土层质量的检测;受土性影响,杂填土地基夯密收敛标准略高于行业规范中的一般规定,为满足场地地基密实度要求,厚层杂填土地基强夯工艺须满足最后两击平均夯沉量不大于0.1 m、浅表卵砾石垫层固体体积率不小于85%、夯后杂填土密实度为密实及以上。最后,结合试验结果对强夯方案进行了优化,得到了深厚杂填土地基高能级强夯处理的推荐参数和现场检测方案。  相似文献   

10.
针对沿海下卧软弱夹层、高地下水位的厚层碎石回填地基,开展了3个试验区的强夯系列试验与对比研究。试验区A:14000,10000和8000 kN.m能级单点夯试验;相同能级(6000 kN.m)、不同压强夯锤对比试验,即34 kPa(18 t),50 kPa(25 t)和90 kPa(46 t)夯锤单点夯。试验区B:12000 kN.m能级强夯群夯试验。试验区C:15000 kN.m能级强夯群夯试验。通过现场圆锥动力触探试验、标准贯入试验与钻孔取样室内土工试验,对同一能级强夯前后、不同能级夯后的地基承载力进行对比分析,给出了沿海复杂地质条件下碎石回填地基上不同夯击能的有效加固深度及梅纳深度公式的修正系数,为同类地区高能级强夯工程的设计、监测与检测提供了参考。  相似文献   

11.
采用高能级强夯处理深厚回填土地基时,可提高地基土的强度和均匀性,降低压缩性,减小沉降量,消除液化和湿陷性等。目前对高能级强夯有效加固深度的研究尚未成熟,规范给出的经验公式又不适用,因此进行高能级强夯有效加固深度计算方法和影响因素研究非常必要。本文针对在碎石土、湿陷性黄土、砂土三种回填土地基上进行的高能级强夯试验,采用平板载荷试验、动力触探试验、瑞利波测试方法研究强夯前、强夯后浅层地基承载力和深层密实度的变化,提出考虑土类别的高能级强夯有效加固深度计算公式,并得到了修正系数取值表。通过分析夯点间距、锤底面积对不同回填土地基有效加固深度的变化规律,得到高能级强夯优化设计参数,可为工程实践提供参考。  相似文献   

12.
10000kN·m高能级强夯作用下孔压测试与分析   总被引:3,自引:0,他引:3  
结合在沿海某回填地基上实施的国内首次10000.kN.m高能级强夯系列试验,对试验过程中不同深度与距离的孔隙水压力(以下简称孔压)进行较为全面的测试与分析,得到夯击过程中孔压增长与消散特征。结果表明:犬牙式孔压增量曲线显示的孔压消散速率较台阶式曲线为快,10000 kN.m强夯的有效加固深度超过11.8m,主夯点间距宜为12 ̄13.5m,夯击击数宜为14 ̄16击。提出一些可供高能级强夯地基处理工程设计、施工和监测参考的建议。  相似文献   

13.
利用4种不同的夯击能量(840,960,1 080,1 200 kN.m)对红砂岩填土路基分别进行动应力扩散和夯后路基的沉降试验研究。试验结果表明:强夯对红砂岩填土路基的加固效果明显,动应力在水平方向上的有效加固宽度从2~3 m变化至3~4 m,在竖直方向上的有效加固深度从3.5~4.0 m变化至5.0~6.0 m;随着夯击次数的增加,动应力在有效加固范围内的增加亦更加明显,但在3~5击后基本稳定;4种夯击能量在土体中产生的变形为4.0~6.0 m的变化比较显著,但当深度超过6.0 m的之后,产生的沉降量就几乎相等,而且在不同夯击能量以及在不同夯击次数下,其最终的下沉位移在5.5 m处都为5.0~7.0 cm,因此这4种夯击能量在红砂岩碎石土高填方路基中的有效加固深度基本上都在4.0~6.0 m之间。这些试验成果可为以后同种条件下的山区公路加固提供参考。  相似文献   

14.
高能级强夯的加固效果显著,应用范围越来越广泛,有效加固深度是评判加固效果和确定强夯方案的重要指标。以10 000kN·m高能级强夯加固某抛填路基工程为背景,采用FLAC 3D有限差分软件进行单点多次夯击的强夯数值模拟,以夯击后的应力为标准来计算有效加固深度。结果表明:随夯击次数的增加,有效加固深度先增大后稳定,6击后有效加固深度的增幅极小。经正交试验和极差分析得到土体参数对强夯有效加固深度的敏感性排序。落距和锤重与有效加固深度呈正相关关系,锤径则为负相关关系。锤重对有效加固深度的影响大于落距,在夯击能相同时,重锤低落所得到的累计夯沉量与有效加固深度均更大。提出强夯有效加固深度估算公式,并实现了量纲统一,该公式与模拟结果偏差较小。  相似文献   

15.
强夯法处理填土地基试验研究   总被引:1,自引:0,他引:1  
刘斌 《四川建筑》2010,30(1):95-96
通过对强夯加固填土进行现场试验研究,分析了强夯加固前后地基的物理力学特性和不同夯击能下强夯有效加固深度。得出强夯加固地基存在盲区(距地表50cm左右),且强夯影响深度可大致分为高加密区、中加密区和低加密区。有效加固深度随夯击能增加而增大,有效加固深度为锤底直径的2.5倍左右。  相似文献   

16.
为了探讨山谷型与滨海型两种不同土质条件下碎石回填地基的强夯加固效果,开展了8000kN·m能级的现场强夯对比试验;同时考虑滨海大型工程建设地基处理施工的需要,在沿海地区实施了10000,15000kN·m高能级强夯的现场试验。通过对各场地不同能级试夯前后地基动力触探与静力载荷试验结果的分析与对比研究,得出如下结论:①采用8000kN·m夯击能处理山谷型厚层碎石回填地基,其有效加固深度可达10.0~11.5m;处理滨海型下卧软弱夹层且存在地下水的碎石回填地基,其有效加固深度为8.5~9.0m;②采用10000kN·m夯击能处理滨海山前厚层碎石回填地基,其有效加固深度为12~12.5m;③采用15000kN·m夯击能处理滨海型下卧软弱夹层且存在地下水的碎石回填地基,其有效加固深度为11.5m;④若采用梅纳公式的修正形式预估强夯的有效加固深度,其修正系数取值范围建议为0.29~0.40;对于软弱下卧层浅、高地下水等不利情况应取低值,对于回填碎石层厚、且级配较好时可取高值。  相似文献   

17.
为探究黄泛区软弱夹层地层条件下强夯加固效果,采用4种不同的夯击能在鲁西黄泛平原区进行现场试验,研究了强夯过程中软弱夹层的夯沉量、超孔隙水压力以及强夯前后地基承载力、土质力学性质变化规律。结果表明:超孔隙水压力消散速率非常快,24 h后超孔隙水压力消散90%;强夯加固效果显著,地基承载力最大可提高80%;选择单夯1 800 kN·m夯击能加固经济合理,夯后土体物理性质明显提高;对于黄泛区含有软弱夹层地层结构,可用超孔隙水压力为自重应力10%估算强夯有效加固深度,有效加固深度约为7 m;对比不同夯击能下Menard加固深度公式,在一般夯击能条件下,实际加固深度与Menard加固深度较为接近,在较大夯击能下,Menard公式并不适用;所得结论对该区域地基加固有一定的指导作用。  相似文献   

18.
针对沿海回填超厚碎石土地基,结合工程实例,通过现场单点夯击试验、群点夯击试验,总结确定25 000 k N·m超高能级强夯的施工参数,通过不同的强夯能级组合及振动碾压,实现超厚碎石土地基的有效加固,满足地基承载力的设计要求,形成成熟的沿海回填超厚碎石土地基施工技术。  相似文献   

19.
通过现场碾压及夯击试验,研究各施工工艺对碳酸盐岩块石填方地基加固效果。检测结果表明,强夯加固方法对碳酸盐岩填方地基有明显效果,采用2遍夯形成4m×4m网格,分别为4 000kN·m与3 000kN·m能级。在强夯不能处理的区域,采用振动碾压进行辅助处理。加固后的地基能够满足上部建筑物的承载力要求。  相似文献   

20.
针对填海工程大厚度碎石回填地基,开展了3000k N·m、6000k N·m和10000k N·m的高能级强夯现场试验,通过夯前、夯后现场超重动力触探试验、瑞雷波检测和夯后平板载荷试验结果的对比分析,确定出不同夯击能下强夯的影响深度和地基加固效果。综合分析认为,3000k N·m夯击能影响深度约为6m,承载力特征值为180k Pa;6000k N·m夯击能影响深度为6~9m,承载力特征值为200k Pa;10000k N·m夯击能影响深度为9~12m,承载力特征值为200k Pa。试验结果可为同类地区高能级强夯工程提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号