首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of L-carnitine on myocardial glycolysis, glucose oxidation, and palmitate oxidation were determined in isolated working rat hearts. Hearts were perfused under aerobic conditions with perfusate containing either 11 mM [2-3H/U-14C]glucose in the presence or absence of 1.2 mM palmitate or 11 mM glucose and 1.2 mM [1-14C]palmitate. Myocardial carnitine levels were elevated by perfusing hearts with 10 mM L-carnitine. A 60-min perfusion period resulted in significant increases in total myocardial carnitine from 4376 +/- 211 to 9496 +/- 473 nmol/g dry weight. Glycolysis (measured as 3H2O production) was unchanged in carnitine-treated hearts perfused in the absence of fatty acids (4418 +/- 300 versus 4547 +/- 600 nmol glucose/g dry weight.min). If 1.2 mM palmitate was present in the perfusate, glycolysis decreased almost 2-fold compared with hearts perfused in the absence of fatty acids. In carnitine-treated hearts this drop in glycolysis did not occur (glycolytic rates were 2911 +/- 231 to 4629 +/- 460 nmol glucose/g dry weight.min, in control and carnitine-treated hearts, respectively. Compared with control hearts, glucose oxidation rates (measured as 14CO2 production from [U-14C]glucose) were unaltered in carnitine-treated hearts perfused in the absence of fatty acids (1819 +/- 169 versus 2026 +/- 171 nmol glucose/g dry weight.min, respectively). In the presence of 1.2 mM palmitate, glucose oxidation decreased dramatically in control hearts (11-fold). In carnitine-treated hearts, however, glucose oxidation was significantly greater than control hearts under these conditions (158 +/- 21 to 454 +/- 85 nmol glucose/g dry weight.min, in control and carnitine-treated hearts, respectively). Palmitate oxidation rates (measured as 14CO2 production from [1-14C]palmitate) decreased in the carnitine-treated hearts from 728 +/- 61 to 572 +/- 111 nmol palmitate/g dry weight.min. This probably occurred secondary to an increase in overall ATP production from glucose oxidation (from 5.4 to 14.5% of steady state myocardial ATP production). The results reported in this study provide direct evidence that carnitine can stimulate glucose oxidation in the intact fatty acid perfused heart. This probably occurs secondary to facilitating the intramitochondrial transfer of acetyl groups from acetyl-CoA to acetylcarnitine, thereby relieving inhibition of the pyruvate dehydrogenase complex.  相似文献   

2.
The objective of this study was to determine the contribution of myocardial triglycerides to overall ATP production in isolated working rat hearts. Endogenous lipid pools were initially prelabeled (pulsed) by perfusing hearts for 60 min with Krebs-Henseleit buffer containing 1.2 mM [1-14C]palmitate. During a subsequent 60-min period (chase), hearts were perfused with either no fat, low fat (0.4 mM [9,10-3H] palmitate), or high fat (1.2 mM [9,10-3H]palmitate). All buffers contained 11 mM glucose. During the "chase," 14CO2 production (a measure of endogenous fatty acid oxidation) and 3H2O production (a measure of exogenous fatty acid oxidation) were determined. Oxidative rates of endogenous fatty acids during the chase were 279 +/- 50, 88 +/- 14, and 88 +/- 8 nmol of [14C]palmitate oxidized per g dry weight.min in the no fat, low fat, and high fat groups, respectively, compared to exogenous palmitate oxidation rates of 0, 361 +/- 68, and 633 +/- 60 nmol of [3H]palmitate/g dry weight.min, in the no fat, low fat, and high fat groups, respectively. Endogenous [14C]palmitate oxidation rates were matched by loss of [14C]palmitate from endogenous myocardial triglycerides. Overall triglyceride content decreased during the no fat and low fat chase perfusion but did not change during the high fat chase. Loss of triglyceride [14C]palmitate during the high fat chase was matched by incorporation of exogenous [3H]palmitate in triglycerides. In a second series of perfusions, three groups of hearts were perfused under similar conditions, except that unlabeled palmitate was used during the "pulse" and that 11 mM [2-3H/U-14C]glucose and unlabeled palmitate was present during the chase. During the chase, both glycolysis (3H2O production) and glucose oxidation (14CO2 production) rates were measured. Rates of glucose oxidation were inversely related to the fatty acid concentration in the perfusate (1257 +/- 158, 366 +/- 40, and 124 +/- 26 nmol of glucose oxidized per min.g dry weight in the no fat, low fat, and high fat groups, respectively), while rates of glycolysis were not significantly different between these groups. Calculation of overall ATP production from both oxidative and glycolytic sources determined that even in the presence of high concentrations of fatty acids, myocardial triglyceride turnover can provide over 11% of steady state ATP production in the aerobically perfused heart. In the absence of fatty acids, myocardial triglyceride fatty acids can become the major energy substrate of the heart.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Sodium 2-[5-(4-chlorophenyl)-pentyl]-oxirane-2-carboxylate (B 807-27 or POCA) inhibits ketogenesis from endogenous and exogenous long-chain fatty acids and 14CO2 production from [U-14 C]palmitate, but not from [U-14 C]palmitoylcarnitine or octanoate, and inhibits gluconeogenesis from lactate and pyruvate in perfused livers of starved rats. Inhibition of ketogenesis, 14CO2 production and gluconeogenesis was complete at concentrations of 10 mumol/l POCA, but onset was more rapid for inhibition of ketogenesis and CO2 production than for gluconeogenesis. Infusion of octanoate abolished inhibition of all three processes. Experiments with isolated rat liver mitochondria showed that carnitine palmitoyltransferase I (EC 2.3.1.21) is inhibited by POCA-CoA. The inhibitory process is dependent on time and concentration, and more pronounced in mitochondria from fed than from fasted rats. Concentrations required for 50% inhibition after 20 min preincubation with POCA-CoA are 0.02, 0.06 and 0.1 mumol/l in liver mitochondria from fed, 24-h-fasted and 48-h-fasted rats, respectively. The inhibitor appears to be tightly bound to the enzyme. The extent of inhibition of carnitine palmitoyltransferase I correlates well with the hypoglycaemic and hypoketonaemic effects of the compounds in fasted rats. We conclude that specific inhibition of the enzyme leads, due to inhibition of long-chain fatty acid utilization, to depressed ketogenesis and gluconeogenesis and, in consequence, to hypoglycaemic and hypoketonaemia in vivo under gluconeogenic and ketogenic conditions.  相似文献   

4.
1. The kinetics of mitochondrial mammalian pyruvate dehydrogenase multienzyme complex (PDHC) is studied by the formation of CO2 using tracer amounts of [1-14C]pyruvate. It is found that the Hill plot results in a (pseudo-)cooperativity with a transition of n-1----3 at a pyruvate concentration about Ks. 2. Addition of L-carnitine, octanoate, palmitoyl-CoA or palmitate + L-carnitine + fatty acid-binding protein results in a Hill coefficient of n = 2 following the kinetics of pyruvate oxidation. 3. Addition of fatty acid-binding protein to an assay system oxidizing palmitate in presence of L-carnitine alters the pattern of the kinetics in the Hill plot so that an apparently lower level of L-carnitine is necessary for the reaction course of beta-degradation. 4. It is concluded that beta-degradation is a coordinated, multienzyme-complex based mechanism tightly linked to citric acid cycle and it is proposed that L-carnitine is actively involved into the reaction and not only functioning as carrier-molecule for transmembrane transport.  相似文献   

5.
Isolated liver cells prepared from starved sheep converted palmitate into ketone bodies at twice the rate seen with cells from fed animals. Carnitine stimulated palmitate oxidation only in liver cells from fed sheep, and completely abolished the difference between fed and starved animals in palmitate oxidation. The rates of palmitate oxidation to CO2 and of octanoate oxidation to ketone bodies and CO2 were not affected by starvation or carnitine. Neither starvation nor carnitine altered the ratio of 3-hydroxybutyrate to acetoacetate or the rate of esterification of [1-14C]palmitate. Propionate, lactate, pyruvate and fructose inhibited ketogenesis from palmitate in cells from fed sheep. Starvation or the addition of carnitine decreased the antiketogenic effectiveness of gluconeogenic precursors. Propionate was the most potent inhibitor of ketogenesis, 0.8 mM producing 50% inhibition. Propionate, lactate, fructose and glycerol increased palmitate esterification under all conditions examined. Lactate, pyruvate and fructose stimulated oxidation of palmitate and octanoate to CO2. Starvation and the addition of gluconeogenic precursors stimulated apparent palmitate utilization by cells. Propionate, lactate and pyruvate decreased cellular long-chain acylcarnitine concentrations. Propionate decreased cell contents of CoA and acyl-CoA. It is suggested that propionate may control hepatic ketogenesis by acting at some point in the beta-oxidation sequence. The results are discussed in relation to the differences in the regulation of hepatic fatty acid metabolism between sheep and rats.  相似文献   

6.
The beneficial effects of in vivo injections (200 mg/kg, twice daily) or in vitro perfusion (5.0 mM) of L-carnitine on an intrinsic abnormality in energy metabolism was investigated in isolated, perfused diabetic rat heart. Hearts were aerobically perfused for 60 min with elevated fatty acid substrate to simulate diabetic conditions. Phosphorus-31 nuclear magnetic resonance spectroscopy revealed a temporal decline in myocardial ATP levels (to approx 82%) during perfusion of diabetic hearts, but not in control hearts. This reduction was prevented by prior treatment in vivo with L-carnitine or by providing L-carnitine acutely in the perfusion medium. Chemical analysis of tissue extracts indicated that L-carnitine injections were effective in replenishing the decrease in total myocardial carnitine content which was present in diabetic hearts and in preventing the accumulation of long chain fatty acyl CoA. Perfusion with L-carnitine also attenuated the elevation of long chain fatty acyl CoA in diabetic hearts. This study gives additional support to the hypothesis that decreases in ATP which occur in the isolated, perfused diabetic heart are correlated with a concomitant elevation in long chain fatty acyl CoA, a known inhibitor of adenine nucleotide translocase. In the presence of elevated exogenous fatty acids, a primary deficiency in the total myocardial carnitine pool would result in elevations in tissue concentrations of long chain fatty acyl CoA since carnitine is a required carrier for transport of fatty acids into mitochondria. Replenishment of the carnitine in vivo was shown to be sufficient to prevent subsequent alteration in long chain fatty acyl CoA and ATP in isolated perfused diabetic hearts despite the burden of elevated fatty acid substrates.  相似文献   

7.
Carnitine protection against adriamycin-induced cardiomyopathy in rats   总被引:2,自引:0,他引:2  
The effects of chronic adriamycin toxicity on myocardial carnitine content and contractile function were studied in rats, along with potential protective effects of L-carnitine administration. Cardiomyopathy was induced over a 6- to 7-week period by weekly intravenous injections of adriamycin, 2 mg/kg. In vivo myocardial tissue levels of carnitine were not significantly changed by adriamycin, but plasma levels were elevated. Cardiac output was depressed in isolated perfused hearts from adriamycin-treated rats perfused with 11 mM glucose. In a second experiment, 4-week-old male rats were divided into four groups: saline-treated control, L-carnitine-treated control, saline-treated adriamycin, and L-carnitine-treated adriamycin. L-Carnitine was given intraperitoneally each day at a dose of 500 mg/kg. Myocardial histology and ultrastructure were analyzed. Cardiac performance was determined in hearts perfused with 1.2 mM palmitate and 5.5 mM glucose. Hearts from saline-treated adriamycin rats showed histopathological changes and a significantly diminished cardiac output at various preloads when compared to saline-treated controls. Daily intraperitoneal L-carnitine reduced histopathological alterations and improved cardiac performance.  相似文献   

8.
DL-Aminocarnitine (3-amino-4-trimethylaminobutyric acid) and acetyl-DL-aminocarnitine (3-acetamido-4-trimethylaminobutyric acid) have been synthesized and the interactions of these compounds with carnitine acetyltransferase and carnitine palmitoyltransferase investigated. As anticipated from the low group transfer potential of amides, carnitine acetyltransferase catalyzes the transfer of acetyl groups from CoASAc to aminocarnitine (Km = 3.8 mM) but does not catalyze detectable transfer from acetylaminocarnitine to CoASH. Acetyl-DL-aminocarnitine is, however, a potent competitive inhibitor of carnitine acetyltransferase (Ki = 24 microM) and is bound to carnitine acetyltransferase about 13-fold more tightly than is acetylcarnitine, with which it is isosteric. DL-Aminocarnitine and, to a lesser extent, acetyl-DL-aminocarnitine are also inhibitors of the carnitine palmitoyltransferase activity of detergent-lysed rat liver mitochondria; in the presence of 1 mM L-carnitine, 5 microM aminocarnitine inhibits palmitoyl transfer by 64%. Significant acylation of aminocarnitine by palmitoyl-CoA was not observed. Neither aminocarnitine nor acetylaminocarnitine is significantly catabolized by mice; aminocarnitine is converted to acetylaminocarnitine in vivo. Both compounds are excreted in the urine. Mice given acetylaminocarnitine catabolize [14C]acetyl-L-carnitine and [14C]palmitate to 14CO2 more slowly than do control animals. Mice given acetylaminocarnitine and then starved are found to reversibly accumulate triglycerides in their livers; mice given the inhibitor but not starved do not show this effect.  相似文献   

9.
The process by which L- and D-carnitine are absorbed was investigated using the live rat and the isolated vascularly perfused intestine. A lumenal dose of 2-6 nmol in the perfused intestine resulted in less than 5% transport of either isomer to the perfusate in 30 min. The L-isomer was taken up by the intestinal tissue about twice as rapidly as the D-isomer by both the perfused intestine (52.8% and 21.6%, respectively) and the live animal (80% and 50%, respectively) in 30 min. After 1 h 90% of the L-carnitine had accumulated in the intestinal tissue and was released to the circulation over the next several hours. Accumulation of D-carnitine reached a maximum of 80% in 2 h and release to the circulations was similar to that of L-carnitine. Uptake of both L-[14C]carnitine and acetyl-L-[14C]carnitine was more rapid in the upper jejunal segment than in other portions of the small intestine. Acetylation occurred in all segments, resulting in nearly 50% conversion to this derivative in 5 min. Increasing the dose of L-carnitine reduced the percent acetylation. The uptake of both isomers was a saturable process and high concentrations of D-carnitine, acetyl-L-carnitine and trimethylaminobutyrate inhibited L-carnitine uptake. In the live animal after 5 h, the distribution of isotope from L-[14C]carnitine and D-[3H]carnitine differed primarily in the muscle where 29.5% of the L-carnitine and 5.3% of the D-carnitine was found and in the urine where 2.9% of the L-carnitine and 7.1% of the D-carnitine was found. The renal threshold for L-carnitine was 80 microM and for D-carnitine 30 microM, in the isolated perfused kidney. Approx. 40% of the L-carnitine but none of the D-carnitine excreted in the urine was acetylated. L-Carnitine and D-carnitine competed for tubular reabsorption.  相似文献   

10.
The regulation of flux through pyruvate dehydrogenase (PDH) and pyruvate carboxylase (PC) by fatty acids and glucagon was studied in situ, in intact hepatocyte suspensions. The rate of pyruvate metabolized by carboxylation plus decarboxylation was determined from the incorporation of [1-14C]pyruvate into 14CO2 plus [14C]glucose. The flux through PDH was determined from the rate of formation of 14CO2 from [1-14C]pyruvate corrected for other decarboxylation reactions (citrate cycle, phosphoenolpyruvate carboxykinase and malic enzyme), and the flux through PC was determined by subtracting the flux through PDH from the total pyruvate metabolized. With 0.5 mM pyruvate as substrate the ratio of flux through PDH/PC was 1.9 in hepatocytes from fed rats and 1.4 in hepatocytes from 24 h-starved rats. In hepatocytes from fed rats, octanoate (0.8 mM) and palmitate (0.5 mM) increased the flux through PDH (59-76%) and PC (80-83%) without altering the PDH/PC flux ratios. Glucagon did not affect the flux through PDH but it increased the flux through PC twofold, thereby decreasing the PDH/PC flux ratio to the value of hepatocytes from starved rats. In hepatocytes from starved rats, fatty acids had similar effects on pyruvate metabolism as in hepatocytes from fed rats, however glucagon did not increase the flux through PC. 2[5(4-Chlorophenyl)pentyl]oxirane-2-carboxylate (100 microM) an inhibitor of carnitine palmitoyl transferase I, reversed the palmitate-stimulated but not the octanoate-stimulated flux through PDH, in cells from fed rats, indicating that the effects of fatty acids on PDH are secondary to the beta-oxidation of fatty acids. This inhibitor also reversed the stimulatory effect of palmitate on PC and partially inhibited the flux through PC in the presence of octanoate suggesting an effect of POCA independent of fatty acid oxidation. It is concluded that the effects of fatty acids on pyruvate metabolism are probably secondary to increased pyruvate uptake by mitochondria in exchange for acetoacetate. Glucagon favours the partitioning of pyruvate towards carboxylation, by increasing the flux through pyruvate carboxylase, without directly inhibiting the flux through PDH.  相似文献   

11.
The catabolism of glycine in the isolated perfused rat liver was investigated by measuring the production of 14CO2 from [1-14C]- and [2-14C]glycine. Production of 14CO2 from [1-14C]glycine was maximal as the perfusate glycine concentration approached 10 mM and exhibited a maximal activity of 125 nmol of 14CO2 X g-1 X min-1 and an apparent Km of approximately 2 mM. Production of 14CO2 from [2-14C]glycine was much lower, approaching a maximal activity of approximately 40 nmol of 14CO2 X g-1 X min-1 at a perfusate glycine concentration of 10 mM, with an apparent Km of approximately 2.5 mM. Washout kinetic experiments with [1-14C]glycine exhibited a single half-time of 14CO2 disappearance, indicating one metabolic pool from which the observed 14CO2 production is derived. These results indicate that the glycine cleavage system is the predominant catabolic fate of glycine in the perfused rat liver and that production of 14CO2 from [1-14C]glycine is an effective monitor of metabolic flux through this system. Metabolic flux through the glycine cleavage system in the perfused rat liver was inhibited by processes which lead to reduction of the mitochondrial NAD(H) redox couple. Infusion of beta-hydroxybutyrate or octanoate inhibited 14CO2 production from [1-14C]glycine by 33 and 50%, respectively. Alternatively, infusion of acetoacetate stimulated glycine decarboxylation slightly and completely reversed the inhibition of 14CO2 production by octanoate. Metabolic conditions which are known to cause a large consumption of mitochondrial NADPH (e.g. ureogenesis from ammonia) stimulated glycine decarboxylation by the perfused rat liver. Infusion of pyruvate and ammonium chloride stimulated production of 14CO2 from [1-14C]glycine more than 2-fold. Lactate plus ammonium chloride was equally as effective in stimulating glycine decarboxylation by the perfused rat liver, while alanine plus ammonium chloride was ineffective in stimulating 14CO2 production.  相似文献   

12.
1. The effect of 2-tetradecylglycidic acid (TDGA), a potent, specific inhibitor of long-chain fatty acid oxidation, on fatty acid and glucose oxidation by isolated rat soleus muscle was studied. 2. TDGA inhibited [1-14C]palmitate oxidation by soleus muscle in a concentration-dependent manner. 3. TDGA inhibited the activity of soleus muscle mitochondrial carnitine palmitoyltransferase A (CPT-A). 4. Added palmitate (0.5 mM) significantly inhibited D-[U-14C]glucose oxidation and, under conditions where TDGA inhibited palmitate oxidation, the oxidation of D-[U-14C]glucose by isolated soleus muscle was significantly stimulated. 5. TDGA stimulation of glucose oxidation was reversed by octanoate, a medium-chain fatty acid whose oxidation is not inhibited by TDGA. 6. When nondiabetic rats were treated with TDGA (10 mg/kg p.o./day x 3 days), fasting plasma glucose was significantly lowered and the ability of isolated contralateral soleus muscles to oxidize palmitate was inhibited while glucose oxidation was significantly stimulated.  相似文献   

13.
A procedure was developed to assay [14C]octanoate oxidation from the production of both 14CO2 and 14C-labeled acid-soluble products. Octanoic acid and its CoA and carnitine esters were eliminated from the acid-soluble products by alkaline hydrolysis of the esters and acidification and binding of the acid to Lipidex 1000. The method was evaluated with homogenates of various rat tissues and human muscles and with human fibroblasts. 14CO2 production was variable and comprised less than 3% of the total oxidation products with homogenates and 26 +/- 19% with fibroblasts. As compared to palmitate, oxidation rates of octanoate were higher in rat liver and heart homogenates, of the same magnitude in muscle homogenates, but lower in fibroblasts. The proportion of antimycin-insensitive oxidation was much lower with octanoate than with palmitate. Using the assay a case of medium-chain acyl-CoA dehydrogenase deficiency could be indicated.  相似文献   

14.
N6′, O2′-dibutyryl adenosine 3′, 5′-cyclic monophosphoric acid, but not other cyclic nucleotides stimulates [14C]ketone body production from [14C]palmitate in isolated rat liver mitochondria. Butyrate alone, as well as unlabeled acetate, octanoate and palmitate had similar effects. This redistribution of the oxidative products of [14C]palmitate can best be explained by exceeding the capacity of the Krebs cycle and/or changes in the acetyl coenzyme A/coenzyme A ratio. In contrast to [14C]palmitate, [14C]octanoate oxidation to [14C]O2 and [14C]ketone bodies was inhibited by the addition of unlabeled fatty acids. This suggests that an additional mechanism by which unlabeled fatty acids may stimulate [14C]ketone body production is by enhancing the carnitine-dependent transport of [14C]palmitate into mitochondria.  相似文献   

15.
L-carnitine deficiency in heart and skeletal muscle was induced by intraperitoneal injection of D-carnitine into starved or fed rats. Carnitine levels in kidney were slightly lowered, but liver, brain and plasma were unaffected. L-carnitine deficient hearts were unable to maintain normal cardiac function when perfused in an isolated working heart apparatus with palmitate as the only perfused substrate. These findings indicate that tissue levels of carnitine in heart and skeletal muscle are maintained in vivo by an exchange transport mechanism. It is postulated that the depletion of L-carnitine from these tissues occurs by an exchange of the D- and L-isomer across the cell membrane. The technique may be useful for estimating the levels of carnitine required for fatty acid oxidation and normal cardiac and skeletal muscle function; however, interpretation of such tests may be complicated by the inhibitory effects of the D-isomer upon carnitine transferase enzymes.  相似文献   

16.
Postischemic recovery of contractile function is better in hearts from fasted rats than in hearts from fed rats. In this study, we examined whether feeding-induced inhibition of palmitate oxidation at the level of carnitine palmitoyl transferase I is involved in the mechanism underlying impaired recovery of contractile function. Hearts isolated from fasted or fed rats were submitted to no-flow ischemia followed by reperfusion with buffer containing 8 mM glucose and either 0.4 mM palmitate or 0.8 mM octanoate. During reperfusion, oxidation of palmitate was higher after fasting than after feeding, whereas oxidation of octanoate was not influenced by the nutritional state. In the presence of palmitate, recovery of left ventricular developed pressure was better in hearts from fasted rats. Substitution of octanoate for palmitate during reperfusion enhanced recovery of left ventricular developed pressure in hearts from fed rats. However, the chain length of the fatty acid did not influence diastolic contracture. The results suggest that nutritional variation of mitochondrial fatty acid transfer may influence postischemic recovery of contractile function.  相似文献   

17.
Fatty Acid Oxidation and Ketogenesis by Astrocytes in Primary Culture   总被引:3,自引:2,他引:1  
The oxidation of the fatty acids octanoate and palmitate to CO2 and the ketone bodies acetoacetate and D-(-)-3-hydroxybutyrate was examined in astrocytes that were prepared from cortex of 2-day-old rat brain and grown in primary culture to confluence. Accumulation of acetoacetate (by mass) in the culture medium of astrocytes incubated with octanoate (0.3-0.5 mM) was 50-90 nmol C2 units h-1 mg of protein-1. A similar rate was obtained using radiolabeled tracer methodology with [1-14C]octanoate as labeled substrate. The results from the radiolabeled tracer studies using [1-14C]- and [7-14C]octanoate and [1-14C]-, [13-14C]-, and [15-14C]palmitate indicated that a substantial proportion of the omega-terminal four-carbon unit of these fatty acids bypassed the beta-ketothiolase step of the beta-oxidation pathway and the 3-hydroxy-3-methylglutaryl (HMG)-CoA cycle of the classic ketogenic pathway. The [14C]acetoacetate formed from the 1-14C-labeled fatty acids, obligated to pass through the acetyl-CoA pool, contained 50% of the label at carbon 3 and 50% at carbon 1. By contrast, the [14C]acetoacetate formed from (omega-1)-labeled fatty acids contained 90% of the label at carbon 3 and 10% at carbon 1, whereas that formed from the (omega-3)-labeled fatty acid contained 20% of the label at carbon 3 and 80% at carbon 1. These results indicate that acetoacetate is primarily formed either by the action of 3-oxo-acid-CoA transferase (EC 2.8.3.5) or acetoacetyl-CoA deacylase (EC 3.1.2.11) or both on acetoacetyl-CoA and not by the action of the mitochondrial HMG-CoA cycle involving HMG-CoA lyase (EC 4.1.3.4), which was readily detected, and HMG-CoA synthase (EC 4.1.3.5), which was barely measurable.  相似文献   

18.
Rat-liver mitochondria were incubated with [14C]palmitate in the presence of L-malate, fluorocitrate, and L-carnitine. The specific activities of acetyl groups incorporated into citrate, ketone bodies and acetyl-L-carnitine were measured. During state-4 oxidation of [1--14C]palmitate the specific activity of the acetyl-CoA pool was 1.3-times higher than that of the average acetyl group of palmitate, indicating an incomplete breakdown of the palmitate molecule. Accumulation of carnitine esters was observed in this condition. The acyl moieties of carnitine esters formed during the state-4 oxidation of [U-14C]palmitate or [16(-14)C]palmitate were analysed by radioactive gas-chromatography. Substantial amounts of beta-oxidation intermediates were found. The accumulation of carnitine esters of C6-C14 intermediates can quantitatively explain the high specific activity of the acetyl-CoA pool during the state-4 oxidation of [1(-14)C] palmitate. The localization and control of beta-oxidation are discussed.  相似文献   

19.
Accelerated glycolysis in hypertrophied hearts may be a compensatory response to reduced energy production from long-chain fatty acid oxidation with 5'-AMP-activated protein kinase (AMPK) functioning as a cellular signal. Therefore, we tested the hypothesis that enhanced fatty acid oxidation improves energy status and normalizes AMPK activity and glycolysis in hypertrophied hearts. Glycolysis, fatty acid oxidation, AMPK activity, and energy status were measured in isolated working hypertrophied and control hearts from aortic-constricted and sham-operated male Sprague-Dawley rats. Hearts from halothane (3-4%)-anesthetized rats were perfused with KH solution containing either palmitate, a long-chain fatty acid, or palmitate plus octanoate, a medium-chain fatty acid whose oxidation is not impaired in hypertrophied hearts. Compared with control, fatty acid oxidation was lower in hypertrophied hearts perfused with palmitate, whereas it increased to similar values in both groups with octanoate plus palmitate. Glycolysis was accelerated in palmitate-perfused hypertrophied hearts and was normalized in hypertrophied hearts by the addition of octanoate. AMPK activity was increased three- to sixfold with palmitate alone and was reduced to control values by octanoate plus palmitate. Myocardial energy status improved with the addition of octanoate but did not differ between groups. Our findings, particularly the correspondence between glycolysis and AMPK activity, provide support for the view that activation of AMPK is responsible, in part, for the acceleration of glycolysis in cardiac hypertrophy. Additionally, they indicate myocardial AMPK is activated by energy state-independent mechanisms in response to pressure overload, demonstrating AMPK is more than a sensor of the heart's energy status.  相似文献   

20.
We investigated whether the antiepileptic valproic acid (VPA) might interfere with oxidative metabolism in heart, as it does in liver. We administered VPA to working rat hearts perfused with radiolabeled carbohydrate and fatty acid fuels. Measurements included oxidation rates of (i) glucose, pyruvate, or lactate in the presence of palmitate and (ii) palmitate, octanoate, or butyrate in the presence of glucose. Oxidation rates were quantified as the rate of appearance of 14CO2 or 3H2O from 14C- or 3H-labeled substrates. In hearts perfused with palmitate, VPA (1 mmol/L) strongly inhibited the oxidation of pyruvate and lactate but slightly stimulated the oxidation of glucose. VPA also inhibited lactate or pyruvate uptake into erythrocytes in vitro. In hearts perfused with glucose, VPA strongly inhibited the oxidation of palmitate and octanoate but had no effect on butyrate oxidation. The absence of valproate CoA ligase activity in cell-free homogenates indicated that the inhibition of fatty acid oxidation by VPA did not require prior activation to valproyl-CoA. The results are consistent with the hypothesis that VPA selectively interferes with myocardial fuel oxidation by mechanisms that are independent of conversion to the CoA thioester.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号