首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 253 毫秒
1.
不可逆吸收式制冷机的(火用)经济和生态学优化准则   总被引:9,自引:2,他引:7  
研究不可逆吸收式制冷机的Yong经济化性能,得到一些新的性能参数,并揭示了它与生态学优化性能的内在联系,所得结论可为三热源制冷机的优化设计和最佳工况选择等提供些新理论依据。  相似文献   

2.
应用内可逆四热源吸收式制冷循环模型,分析吸收式制冷机受传热不可逆性影响时的热经济性能。在牛顿传热定律下,导出了循环的最佳热经济性目标和制冷系数的基本优化关系和最大热经济性目标及相应的制冷系数与比制冷率;通过数值算例,得出循环参数对循环的热经济性目标、制冷系数和比制冷率的影响关系。  相似文献   

3.
张永贵 《节能技术》2004,22(4):18-20
以热力学第一、二定律为基础,结合Yong、Wu的基本定义,探讨了冷量Yong、冷量Wu的计算方法,指出了当前Yong分析理论体系中存在的‘冷量Yong、冷量Wu计算方法不能与热力学第一定律相统一’的问题,提出了新的计算方法,使得冷量Yong计算方法更科学、严谨。  相似文献   

4.
内可逆四热源吸收式制冷机生态学最优性能   总被引:1,自引:0,他引:1  
基于能量分析的观点,建立了反映四热源吸收式制冷机制冷率与熵产率之间最佳折中的生态学准则,分析了线性(牛顿)传热定律下内可逆四热源吸收式制冷机的生态学最优性能.导出了生态学目标与制冷系数的优化关系和最大生态学目标值及其相对应的制冷系数、制冷率和熵产率,确定了循环主要参数的生态学优化选择范围.数值算例分析了制冷率目标和生态学目标的相互关系,计算表明生态学准则对吸收式制冷机优化设计是一种具有长期效应的可选优化目标.  相似文献   

5.
太阳能集热器的能质分析   总被引:1,自引:1,他引:1  
依据热力学第一、二定律,对平板型太阳能集热器的传热和流动过程进行了能质综合分析,提出了一项评价太阳能集热器热力学性能的指标——单位有用收益的Yong损,讨论了雷诺数、无因次入口换热温差和无因次热流密度等参数对太阳能集热器热力学性能的影响。  相似文献   

6.
研究和分析加热器经济性指标与运行工况的关系、更好地掌握加热器系统特征、提高系统的运行水平是提高机组经济性和安全性的关键。运用基于热力学第一定律的等效焓降法和基于热力学第二定律的分析法对加热器系统特征进行分析研究。等效焓降理论热力系统热经济性计算的通用矩阵方程能有效克服热经济性矩阵分析方法需要联立其它方程才能求解热力系统最终热经济性指标的缺陷。分析法为评价能量转换的"量"和"质"提供了统一的尺度。综合考虑上述方法,分析加热器系统特征,为准确评价热力系统的热经济性提供依据。  相似文献   

7.
燃气轮机中的燃烧反应是一种高度不可逆的过程,因此Yong效率较低。燃气轮机一燃料电池混合装置则由于绝大部分燃料通过电化学反应来释放能量,只有未完全利用的燃料参加燃烧反应。用热力学第一定律和热力学第二定律对燃气轮机和它与燃料电池构成的混合装置进行了比较分析,研究了循环的Yong效率和各部件的性能对整个系统的影响,给出了混合装置中对提高系统性能具有重要影响的部件。  相似文献   

8.
刘庆伟  尹洪超 《节能》2012,31(7):33-35
氨水吸收式制冷需要消耗很大的公用工程,其性能系数(COP)不是很高,引入夹点分析法分析氨水吸收式制冷系统,该方法能够确定可回收的系统最大内部循环热,优化后的系统性能系数为0.623,比优化前的系统性能系数高11.58%。该方法对氨水吸收式制冷设计具有一定的指导意义。  相似文献   

9.
燃气机热泵的热力学分析   总被引:3,自引:0,他引:3  
燃气机热泵是以燃气机作为动力来驱动的压缩式热泵。对燃气机热泵的热力学第一定律、Yong分析和能级平衡理论分析结果表明:其一次能源利用率可达1.76,Yong效率为0.291,能级平衡系数为0.394。与电动热泵等其他供热装置相比,燃气机热泵有着较高的热力学完善性,是一项高效节能技术。由于能级平衡理论分析考虑了Wu的作用,而热泵供暖时其性能系数的提高主要是利用了环境热量,所以建议采用能级平衡理论来分析评价热泵的性能。  相似文献   

10.
建立一种不可逆的四温度位吸收式热泵模型,导出其最小传热面积与四热源熵变化率的关系并得到了热力学第二定律的类比表达式,获得了最佳供热率、性能系数和传热面积之间的优化关系,所得结论可为四热源吸收式热泵的优化设计和最佳工况选择提供新的理论途径。  相似文献   

11.
In this study, the first and second law of thermodynamics are used to analyze the performance of a novel absorption system for cooling and heating applications. The active component of the sorbent used in this study is sodium thiocyanate (NaSCN). Ammonia (NH3) is chosen as sorptive. A mathematic model based on exergy analysis is introduced to analyze the system performance. Enthalpy, entropy, temperature, mass flow rate and exergy loss of each component and the total exergy loss of the system are evaluated. Furthermore, the coefficient of performance (COP) and exergetic efficiency of the absorption system for cooling and heating processes are calculated from the thermodynamic properties of the working fluids under different operating conditions. The results show that the COP of cooling and heating increases with the heat source temperature and decreases with the cooling water inlet temperature, but the system exergetic efficiency does not show the same trends for both cooling and heating applications. The simulation results can be used for the thermodynamic optimization of the current system.  相似文献   

12.
《Exergy》2002,2(4):259-265
Exergy analysis of heat pump—air conditioner systems has been carried out. The irreversibilities due to heat transfer and friction have been considered. The coefficient of performance based on the first law of thermodynamics as a function of various parameters, their optimum values, and the efficiency and coefficient of performance based on exergy analysis have been derived. Based on the exergy analysis, a simulation program has been developed to simulate and evaluate experimental systems. The simulation of a domestic heat pump—air conditioner of 959 W nominal power (Matsushita room air conditioner model CS-XG28M) is then carried out using experimental data. It is found that COP based on the first law varies from 7.40 to 3.85 and the exergy efficiency from 0.37 to 0.25 both a decreasing function of heating or cooling load. The exergy destructions in various components are determined for further study and improvement of its performance.  相似文献   

13.
《Energy》2005,30(7):1162-1175
In this paper, a comparative study is performed for the transcritical carbon dioxide refrigeration cycles with a throttling valve and with an expander, based on the first and second laws of thermodynamics. The effects of evaporating temperature and outlet temperature of gas cooler on the optimal heat rejection pressure, the coefficients of performance (COP), the exergy losses, and the exergy efficiencies are investigated. In order to identify the amounts and locations of irreversibility within the two cycles, exergy analysis is employed to study the thermodynamics process in each component. It is found that in the throttling valve cycle, the largest exergy loss occurs in the throttling valve, about 38% of the total cycle irreversibility. In the expander cycle, the irreversibility mainly comes from the gas cooler and the compressor, approximately 38% and 35%, respectively. The COP and exergy efficiency of the expander cycle are on average 33% and 30% higher than those of the throttling valve cycle, respectively. It is also concluded that an optimal heat rejection pressure can be obtained for all the operating conditions to maximize the COP. The analysis results are of significance to provide theoretical basis for optimization design and operation control of the transcritical carbon dioxide cycle with an expander.  相似文献   

14.
Based on an endoreversible four-heat-reservoir absorption-refrigeration-cycle model, the optimal thermo-economic performance of an absorption-refrigerator is analyzed and optimized assuming a linear (Newtonian) heat-transfer law applies. The optimal relation between the thermo-economic criterion and the coefficient of performance (COP), the maximum thermo-economic criterion, and the COP and specific cooling load for the maximum thermo-economic criterion of the cycle are derived using finite-time thermodynamics. Moreover, the effects of the cycle parameters on the thermo-economic performance of the cycle are studied by numerical examples.  相似文献   

15.
In this paper energy, exergy and thermoeconomic analysis of a combined cooling, heating and power (CCHP) system has been performed. Applying the first and second laws of thermodynamics and economic analysis, simultaneously, has made a powerful tool for the analysis of energy systems such as CCHP systems. The system integrates air compressor, combustion chamber, gas turbine, dual pressure heat recovery steam generator (HRSG) and absorption chiller to produce cooling, heating and power. In fact, the first and second laws of thermodynamics are combined with thermoeconomic approaches. Next, computational analysis is performed to investigate the effects of below items on the fuel consumption, values of cooling, heating and net power output, the first and second laws efficiencies, exergy destruction in each of the components and total cost of the system. These items include the following: air compressor pressure ratio, turbine inlet temperature, pinch temperatures in dual pressure HRSG, pressure of steam that enters the generator of absorption chiller and process steam pressure. Decision makers may find the methodology explained in this paper very useful for comparison and selection of CCHP systems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
The energy, exergy and entropy balance methods are used to analyse a double‐stage LiBr‐water absorption heat transformer cycle. An energy balance comparing component energy transfer is used to determine energy calculations. An exergy balance is employed to evaluate exergy destruction, and an entropy balance to verify entropy generation. A comparison of the results by the second law exergy and entropy balances indicates that they are consistent in identifying the location and relative significance of key non‐idealities within the system. The results obtained clearly show the influence of irreversibilities of individual components on deterioration of the effectiveness and the coefficient of performance of the system. The second law analysis offers an alternative view of cycle performance and provides an insight that the first law analysis cannot. The differences between the first law analysis by energy balance method and second law analysis by exergy and entropy balance methods are illustrated quantitatively for the double‐stage absorption heat transformer cycle, and the limitations and advantages of these methods are presented and discussed. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
In this research paper, comprehensive thermodynamic modeling of an integrated energy system consisting of a multi-effect desalination system, geothermal energy system, and hydrogen production unit is considered and the system performance is investigated. The system's primary fuel is a geothermal two-phase flow. The system consists of a single flash steam-based power system, ORC, double effect water–lithium bromide absorption cooling system, PEM electrolyzer, and MED with six effects. The effect of numerous design parameters such as geothermal temperature and pressure on the net power of steam turbine and ORC cycle, the cooling capacity of an absorption chiller, the amount of produced hydrogen in PEM electrolyzer, the mass flow rate of distillate water from MED and the total cost rate of the system are studied. The simulation is carried out by both EES and Matlab software. The results indicate the key role of geothermal temperature and show that both total exergy efficiency and total cost rate of the system elevate with increasing geothermal temperature. Also, the impact of changing absorption chiller parameters like evaporator and absorber temperatures on the COP and GOR of the system is investigated. Since some of these parameters have various effects on cost and efficiency as objective functions, a multi-objective optimization is applied based on a Genetic algorithm for this system and a Pareto-Frontier diagram is presented. The results show that geothermal main temperature has a significant effect on both system exergy efficiency and cost of the system. An increase in this temperature from 260 C to 300 C can increase the exergy efficiency of the system for an average of 12% at various working pressure and also increase the cost of the system by 13%.  相似文献   

18.
利用汽轮机抽汽作为吸收式制冷驱动热源的联产制冷,将供电、制冷有机结合在一起,不仅满足制冷要求也改善联产机组效率。通过引入抽汽yong增益概念,揭示了汽轮机抽汽特性规律,在此基础上从联产制冷目的yong效率角度比较了几种制冷方式,分析了汽轮机抽汽参数和相对内效率等因素对联产制冷能效性能影响规律,抽汽的yong增益比是联产制冷yong效率影响起决定作用的因素,所得结论对联产制冷吸收机的合理选用匹配提供有益的指导。  相似文献   

19.
Exergy analysis of an experimental heat transformer for water purification   总被引:1,自引:0,他引:1  
First and second law of thermodynamics have been used to analyze the performance of an experimental heat transformer used for water purification. The pure water is produced in the auxiliary condenser delivering an amount of heat, which is recycled into the heat transformer increasing the heat source temperatures and also the internal, external and exergy coefficients of performance. The theoretical and experimental study was divided into two parts. In the first part, a second law analysis was carried out to the experimental system showing that the absorber and the condenser are the components with the highest irreversibilities. In the second part, with the results obtained from the second law analysis, new test runs were carried out at similar conditions than the former but varying only one selected temperature at the time. Comparing the COP (coefficient of performance) between the old and new test runs, it was shown that higher internal, external and exergy coefficients of performance were obtained in all the new test runs. Also it was shown that the ECOP (exergy coefficient of performance) increases with an increment of the amount of the purified water produced and with the decrease of the flow ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号