首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sintered ZnSxSe1−x films have been prepared in the entire composition range from ZnSe to ZnS by using the screen printing method. To deposit good quality films, optimum conditions have been determined. Wide band gap ternary films have wide applications in solar cells. The band gap of these films are determined by reflection spectra in the wavelength range of 325–600 nm using the Tauc relation. These films have a direct band gap, which varies from 3.50 eV for ZnS to 2.66 eV for ZnSe films. The wurtzite structure of ZnSSe films was confirmed by X-ray diffraction analysis of these films.  相似文献   

2.
HfO2 thin films with columnar microstructure were deposited directly on ZnS substrates by electron beam evaporation process. SiO2 thin films, deposited by reactive magnetron sputtering, were used as buffer layers, HfO2 thin films of granular microstructure were obtained on SiO2 interlayer by this process. X-ray diffraction patterns demonstrate that the as-deposited HfO2 films are in an amorphous-like state with small amount of crystalline phase while the HfO2 films annealed at 450 °C in O2 for 30 min and in Ar for 150 min underwent a phase transformation from amorphous-like to monoclinic phase. Antireflection effect in certain infrared wave band, such as 3–6 μm, 4–12 μm, 4–8 μm and 3–10 μm, can be observed, which was dependent on the thickness of thin films. The cross-sectional images of HfO2 films, obtained by field emission scanning electron microscopy, revealed that there was no distinct morphological change upon annealing.  相似文献   

3.
A series of 0.2–0.6 μm thick SnOx films were deposited onto borosilicate and sodalime silica glass substrates by atmospheric plasma discharge chemical vapor deposition at 80 °C. SnOx films deposited from monobutyltin trichloride contained a large percentage of SnCl2:2H2O, and therefore were partially soluble in water. SnOx coatings deposited from tetrabutyltin were not soluble in water or organic solvents, had good adhesion even at growth rates as high as 2.3 nm/s, had high transparency of  90% and electrical resistivity of 107 Ω cm. As-grown tin oxide coatings were amorphous with a small concentration of SnO2, SnO and Sn crystalline phases as determined by grazing angle X-ray diffraction and X-ray photoelectron spectroscopy measurements. Upon annealing in air at 600 °C the resistivity of SnOx films decreased to 5–7 Ω cm. Furthermore, optical and X-ray measurements indicated that SnOx was converted into SnO2 (cassiterite) with a direct band gap of 3.66 eV. Annealing of as-grown SnOx films in vacuum at 340 °C led to formation of the p-type conductor SnO/SnOx. The indirect band gap of SnO was calculated from the optical spectra to be 0.3 eV.  相似文献   

4.
Undoped, silver doped and silver-terbium doped zinc sulfide photoluminescent thin films have been prepared by the spray pyrolysis technique. The crystalline structure of the deposited films is hexagonal wurzite, in all cases. The films have a preferential growth with the (0 0 2) direction perpendicular to the surface of the substrate. In general, the relative chemical compositions show that the films are formed by a zinc rich ZnS material. The photoluminescent excitation measurements are in agreement with the optical transmission results indicating that the excitation mechanism is related to electron–hole pair generation across the ZnS band gap. The photoluminescent spectra show the typical bands associated with the transition from the 5D4 level to the 7F6, 7F5, 7F4 and 7F3 levels of the Tb3+ ions. The emission spectra for the undoped and silver doped films show the well known self-activated emission, centered at 460 and 490 nm, respectively. The dependence of the emission intensity on the temperature shows an energy activation of 0.1 eV for competitive non-radiative transitions. Electroluminescent devices using silver-terbium doped zinc sulfide films as active layer show emission spectra similar to those observed in photoluminescence measurements but with a reduced intensity.  相似文献   

5.
We have investigated the electrical and optical properties of Ba(HfxTi1 − x)O3 (x = 0, 0.1, 0.2, 0.3, 0.4) (BHT) thin films deposited on platinized silicon and fused quartz substrates. Analyses of the X-ray diffraction patterns reveal that with the increase in Hf contents there is a systematic increase of the lattice constants of BHT films. Irrespective of the measurement frequencies the dielectric constants was found to be systematically decreased, whereas their frequency dispersion was found to be reduced with increasing Hf contents. The leakage current data measured using a metal-insulator–metal configuration reveal that the Schottky emission is the dominant leakage current mechanism in these films. BHT films, deposited on transparent fused quartz substrates, were also characterized in terms of their optical properties. For this purpose the transmittance of the undoped as well as Hf doped barium titanate thin films was measured as a function of wavelength in the range of 290 nm to 800 nm. The transmission spectra were analysed to estimate the wavelength dependence of the refractive indices/extinction coefficients as well as the variation of optical band gap of these films. With the increase of Hf contents, a systematic increase of the band gap [from 3.65 eV (undoped film) to 4.15 eV (40 at.% Hf doped barium titanate film)] was observed. The reduction of the leakage current with increasing hafnium substitution is discussed on the basis of an increasing Schottky barrier height and due to a simultaneous increase in the band gap of the material.  相似文献   

6.
Cadmium sulphide (CdS) nanostructured materials were synthesized by a wet chemical route without using any capping agent. X-ray diffraction pattern showed the typical interplanar spacings corresponding to the cubic phase of CdS. The peaks were identified to originate from (100), (220), and (311) planes of CdS, respectively. Transmission electron microscopy studies showed the nanowire formation with an average length 1-5 μm and the average diameter was in the range 25-30 nm. UV-visible transmission spectrum of the films deposited on glass substrates was recorded in the region 300-800 nm at room temperature. Transmission spectrum showed 75%-90% transmittance in the visible region. The values of direct band gap were obtained as 3.07 eV and 3.00, 2.89, 2.86 eV for unannealed and annealed at 100°C, 150°C, 200°C films, respectively. It showed the blue shift with respect to the bulk value. Room temperature photoluminescence was also measured, which showed a broad band lying in the range 510-625 nm.  相似文献   

7.
High-quality and well-reproducible PbSnS3 thin films have been prepared by a simple and inexpensive chemical-bath deposition method from an aqueous medium, using thioacetamide as a sulphide ion source. X-ray diffraction analysis of the deposited films revealed that the as-deposited films were amorphous, however, an amorphous-to-crystalline phase transition was observed as the result of thermal annealing at 425 K for 1 h. The X-ray structure analysis of the collected powder from the bath annealed at 425 K for 1.5 h revealed an orthorhombic phase.

Analysis of the optical absorption data of crystalline PbSnS3 films revealed that both direct and indirect optical transitions exist in the photon energy range 1.24–2.48 eV with optical band gaps of 1.68 and 1.42 eV, respectively. However, a forbidden direct optical transition with a band gap value of 1.038 eV dominates at low energy (<1.24 eV). The refractive index changes from 3.38 to 2.16 in the range 500–1300 nm. The high frequency dielectric constant and the carrier concentration to the effective mass ratio calculated from the refractive index analysis were found to be 4.79 and 2.3×1020 cm−3, respectively. The temperature dependence of the electrical resistivity of the deposited films follows the semiconductor behaviour with extrinsic and intrinsic conduction. The determined activation energies range are 0.35–0.42 and 0.76–85 eV, respectively.  相似文献   


8.
An all alkoxide based sol–gel route was investigated for preparation of epitaxial La0.5Sr0.5CoO3 (LSCO) films on 100 SrTiO3 (STO) substrates. Films with 20–30 to 80–100 nm thickness were prepared by spin-coating 0.2–0.6 M (metal) solutions on the STO substrates and heat treatment to 800 °C at 2 °C min− 1, 30 min, in air. The films were epitaxial with a cube-on-cube alignment and the LSCO cell was strained to match the STO substrate of 3.905 Å closely; a and b = 3.894 Å and 3.897 Å for the 20–30 and 80–100 nm films, respectively. The c-axis was compressed to 3.789 Å and 3.782 Å for the 20–30 and 80–100 nm films, respectively, which resulted in an almost unchanged cell volume as compared to polycrystalline film and nano-phase powders prepared in the same way. The SEM study showed mainly very smooth, featureless surfaces, but also some defects. A film prepared in the same way on an -Al2O3 substrate was dense and polycrystalline with crystallite sizes in the range 10–50 nm and gave cubic cell dimensions of ac = 3.825 Å. The conductivity of the ca 30–40 nm thick polycrystalline film was 1.7 mΩcm, while the epitaxial 80–100 nm film had a conductivity of around 1.9 mΩcm.  相似文献   

9.
A chemical route to nanocrystalline photoconducting tin(II) selenide quantum dots in thin film form was developed and the structural and optical properties of the synthesized materials were studied. The synthesized SnSe nanocrystals deposited as thin films belong to the orthorhombic crystalline system. Unit cell parameters of the as-deposited and thermally treated semiconducting quantum dots in thin film form were determined from experimental X-ray diffraction data employing multiple regression analysis technique. An average crystal size of 14.8 nm was estimated for as-deposited SnSe quantum dots using the Debye-Scherrer approach which increases to 23.3 nm upon annealing. Average crystal size increase upon thermal treatment is accompanied by slight enlargement of the unit cell parameters. On the basis of optical absorption studies of the SnSe films, conclusions regarding the band structure of this material in reciprocal space were derived. The as-deposited films are characterized by indirect band gap energy of 1.20 eV which exhibits a slight red shift to 1.10 eV upon annealing. Additional electronic transition of a direct type was found to occur at 1.74 eV in the case of as-deposited films, shifting to 1.65 eV in the course of annealing. All these values are blue-shifted with respect to the macrocrystalline material ones, which along with the red shift detected upon annealing, is a strong indication of the three-dimensional confinement effects in the studied nanocrystals.  相似文献   

10.
The d.c. electrical conductivity and optical properties of polycrystalline zinc oxide films (220–450 nm thick) annealed in hydrogen after chemical vapor deposition are investigated. A minimum film resistivity after the annealing gives 0.31 cm for the film as-deposited at a substrate temperature of 823 K. From the temperature dependence of conductivity, band conduction is confirmed for the films at temperatures above 250 K. The effect of grain-boundary scattering is due to thermionic emission of electrons over grain boundary barriers. At temperatures below 250 K, variable-range hopping transport is found to be dominant. The films are transparent in the wavelength range 400 to 1000 nm and have sharp ultraviolet absorption edges at 380 nm. The absorption edge analysis reveals the optical band gap energy for the films to be 3.18–3.23 eV. The Urbach tail analysis gives the width of localized states Ee=0.06-0.14eV.  相似文献   

11.
ZnS thin films of different thicknesses were prepared by chemical bath deposition using thiourea and zinc acetate as S2− and Zn2+ source. The effect of film thickness on the optical and structural properties was studied. The optical absorption studies in the wavelength range 250–750 nm show that band gap energy of ZnS increases from 3·68–4·10 eV as thickness varied from 332–76 nm. The structural estimation shows variation in grain size from 6·9–17·8 nm with thickness. The thermoemf measurement indicates that films prepared by this method are of n-type.  相似文献   

12.
Nanocrystalline ZnS:Mn thin films were fabricated by a chemical bath deposition route on glass, silicon, and quartz substrates using a weak acidic bath, in which citrate ions acts as a nontoxic complexing agent for zinc ions and thioacetamide acts as a source of sulfide ions at 60 °C. The composition of films were characterized by energy-dispersive X-ray spectrometer, inductively coupled plasma atomic emission spectroscopy, Rutherford backscattering, and attenuated total reflection-Fourier transform infrared spectroscopy. X-ray diffraction pattern and transmission electron microscopy image confirm that the films have nanocrystalline nature. The band gap energy of ZnS:Mn films is blue-shifted by about 0.3 eV with respect to the bulk value (3.67 eV), probably due to the quantum size effect as expected from the nanocrystalline nature of the ZnS:Mn thin films. The dispersion and optical constants of the films were determined. These parameters changed with the deposition time.  相似文献   

13.
In this article, we present the optical properties of thin films containing Mn-doped ZnS nanocrystals synthesised by the chemical method. The ZnS nanoparticles within the polymer matrix (polyvinyl alcohol) were investigated by SEM and TEM images and analysed by X-ray diffraction. The effect of polymer concentration on the direct band gap of Mn-doped ZnS thin films was calculated from the data for absorption measurements. The values of the band gap are in the range of 3.73–3.90?eV. In addition, we discuss the photoluminescence of these films.  相似文献   

14.
We report the physical and electronic properties of BP films of 1:1, 1:1.15 and 1.25:1 stoichiometry prepared by co-evaporating B and P onto glass and Si (100) substrates. Compositional information was obtained from X-ray photoelectron spectroscopy measurements. Optical studies indicated allowed indirect transition at  2.08 eV. The room temperature photoluminescence peak at  2.01 eV was due to band gap transitions which shifted to higher energy value when recorded at lower temperature. Fourier transformed infrared (FTIR) spectra were dominated by the characteristic peak of the B–P located at  810 cm− 1 which could be identified as arising due to transverse optical vibration mode (k  0) while the shoulder at  850 cm− 1 may be due to longitudinal optical (k  0) vibration mode. Other characteristic peaks for B–O, P–O and B–H vibration modes were also present in the FTIR spectra. Characteristic Raman peaks for BP located at  415 cm− 1 and 806 cm− 1 were observed in these films.  相似文献   

15.
Thin films of zinc oxide (ZnO) were prepared by dc reactive magnetron sputtering on glass substrates at various oxygen partial pressures in the range 1×10−4–6×10−3 mbar and substrate temperatures in the range 548–723 K. The variation of cathode potential of zinc target on the oxygen partial pressure was explained in terms of target poisoning effects. The stoichiometry of the films has improved with the increase in the oxygen partial pressure. The films were polycrystalline with wurtzite structure. The films formed at higher substrate temperatures were (0 0 2) oriented. The temperature dependence of Hall mobility of the films formed at various substrate temperatures indicated that the grain boundary scattering of charge carriers was predominant electrical conduction mechanism in these films. The optical band gap of the films increased with the increase of substrate temperature. The ZnO films formed under optimized oxygen partial pressure of 1×10−3 mbar and substrate temperature of 663 K exhibited low electrical resistivity of 6.9×10−2 Ω cm, high visible optical transmittance of 83%, optical band gap of 3.28 eV and a figure of merit of 78 Ω−1 cm−1.  相似文献   

16.
Smooth and compact thin films of amorphous and crystalline antimony sulfide (Sb2S3) were prepared by radio frequency sputtering of an Sb2S3 target. As-deposited films are amorphous. Polycrystalline antimony sulfide films composed of ∼ 500 nm grains are obtained by annealing the as-deposited films at 400 °C in sulfur vapors. Both amorphous and crystalline antimony sulfide have strong absorption coefficients of 1.8 × 105 cm− 1 at 450 nm and 7.5 × 104 cm− 1 at 550 nm, and have direct bandgaps with band energies of 2.24 eV and 1.73 eV, respectively. These results suggest the potential use of both amorphous and crystalline antimony sulfide films in various solid state devices.  相似文献   

17.
《Optical Materials》2005,27(2):261-264
II–VI semiconductors are of great importance due to their applications in various electro-optic devices. Sulphides of zinc and cadmium have been utilized effectively in various opto-electronic devices. We have prepared vacuumed CdZnS films by the vacuum evaporation method. Wide band gap binary films have wide application in solar cells. The structural and optical properties of these films have been studied. The band gap of these films is studied by absorption spectra in the wavelength range 400–650 nm. The films have a direct band gap, which varies from 3.50 eV for zinc sulphide to 2.44 eV for cadmium sulphide. The X-ray diffraction pattern of these films for structural analysis is also reported.  相似文献   

18.
This study investigates the effect of different growth parameters on the structural and optical properties of ZnS thin films, prepared using spray pyrolysis. The films were prepared using different Zn:S ratios (between 1:1 and 1:6) and in different growth solutions: (A), zinc chloride and thiourea and (B) dehydrated zinc acetate and thiourea, both in distilled water.By varying the Zn:S ratio in the films, the optical properties (absorption and photoluminescence) show that different species are created during film growth. This was deduced from the wide emission band appearing in the green region of the photoluminescence spectra, and from the change in band gap, which varies between 3.2 and 3.5 eV. Films formed from solution (A) with a Zn:S ratio of 1:3 or 1:4 show the best morphology and transmission. ZnS has a wider band gap than other conventional II-VI semiconductors utilized in various electronic and optical devices and can be expected to provide a useful window layer of solar cells which leads to an improvement in overall efficiency by decreasing absorption loss.  相似文献   

19.
To investigate the properties of lead sulfide (PbS) nanocrystals, we have prepared PbS nanocrystals on/in the porous alumina membrane with a pore diameter 20 nm. Utilizing the reaction of Pb wires and the hydrogen sulfide (H2S) gas, PbS nanocrystals produced and grew as the reaction time increased. The composition identification of the nanocrystals was performed by the XPS and EDS analyses. More structure characteristics of the PbS nanocrystals obtained from the TEM analysis. As indicated in the PL spectra, an orange-red emission band appeared and the emission intensities were obviously related to the defects in the nanocrytals. A significant quantum confinement effect made the energy gap of PbS nanocrystals produce a blue shift from 0.41 eV to 1.89 eV. Furthermore, the growth mechanism of the PbS nanocrystals was also discussed.  相似文献   

20.
Shaped zinc sulfide nanocrystals were synthesized in W/O microemulsions by using cyclohexane/Triton X-100/n-pentanol/water system. Under different synthetic conditions appearance of two distinct morphologies of ZnS nanocrystals, either cubes or nanowires, was proven by transmission electron microscopy (TEM). The ZnS cubes have an average size of about 25 nm, while the ZnS nanowires have 25 Å diameter and length ranging from several hundred nanometers up to a few microns. The X-ray diffraction analysis (XRD) revealed formation of ZnS with cubic zinc blende crystal structure. Due to two dimensional confinement the exciton of ZnS nanowires is blue shifted compared to the bulk material. Four well-resolved photoluminescence bands in visible spectral region were observed upon excitation of cubic ZnS particles, while in the case of ZnS nanowires emission band was observed at 421 nm. The origin of photoluminescence bands was discussed in details.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号