首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 705 毫秒
1.
Nonvolatile organic memory devices were fabricated utilizing a graphene oxide (GO) layer embedded between two polystyrene (PS) layers. Scanning electron microscope images of GO sheets sandwiched between two PS layers showed that the GO sheets were clearly embedded in the PS layers. Capacitance–voltage (CV) curves of the Al/PS/GO/PS/n-type Si devices clearly showed hysteresis behaviors with multilevel characteristics. The window margin of the nonvolatile memory devices increased from 1 to 7 V with increasing applied sweep voltages from 6 to 32 V. The cycling retention of the ON/OFF switching for the devices was measured by applying voltages between +15 and −15 V. While the capacitance of the memory devices at an ON state have retained as 230 pF up to 104 cycles, that at an OFF state maintained as 16 pF during three times of repeated measurements. The extrapolation of the retention data for the devices maintained up to 106 cycles. The operating mechanisms of the nonvolatile organic memory devices with a floating gate were described by the CV results and the energy band diagrams.  相似文献   

2.
The capacitance–voltage (C–V) and conductance–voltage (G/ω–V) characteristics of Al/SiO2/p-Si metal-oxide-semiconductor (MOS) Schottky diodes have been measured in the voltage range from ?3 to +3 V and frequency range from 5 KHz to 1 MHz at room temperature. It is found that both C and G/ω of the MOS capacitor are very sensitive to frequency. The fairly large frequency dispersion of C–V and G/ω–V characteristics can be interpreted in terms of the particular distribution of interface states at SiO2/Si interface and the effect of series resistance. At relatively low frequencies, the interface states can follow an alternating current (AC) signal that contributes to excess capacitance and conductance. This leads to an anomalous peak of C–V curve in the depletion and accumulation regions. In addition, a peak at approximately ?0.2 V appears in the Rs–V profiles at low frequency. The peak values of the capacitance and conductance decrease with increasing frequency. The density distribution profile of interface state density (Nss) obtained from CHF–CLF capacitance measurement also shows a peak in the depletion region.  相似文献   

3.
We investigated the electrical characterization of metal–ferroelectric–oxide semiconductor (MFeOS) structures for nonvolatile memory applications. Al/PZT/Si and Al/PZT/SiO2/Si capacitors were fabricated using lead zirconate titanate (PZT; 35:65) as the ferroelectric layer. The maximum CV memory window was 6 V for metal–ferroelectric semiconductor (MFeS) structures and 2.95 and 6.25 V for MFeOS capacitors with a buffer layer of 2.5 and 5 nm, respectively. Comparative data reveal a higher dielectric strength and lower leakage characteristic for an MFeOS structure with a 5-nm SiO2 buffer layer compared to an MFeS structure. We also observed that the leakage characteristic was influenced by the annealing conditions.  相似文献   

4.
The nonvolatile organic memory devices based on the tris(8-hydroxyquinolinato)aluminum (Alq3) emitting layer embedded with zinc oxide nanoparticles (ZnO-NPs) are reported. The devices have a typical tri-layer structure consisting of the Alq3/ZnO-NPs/Alq3 layers interposed between indium tin oxide (ITO) and aluminum (Al) electrodes. An external bias is used to program the ON and OFF states of the device that are separated by a four-orders-of-magnitude difference in conductivity. No significant degradation of the device is observed in either the ON or OFF state after continuous stress (∼105 s) and multicycle (∼103 cycles) testings. These nanoparticles behave as the charge trapping units, which enable the nonvolatile electrical bistability when biased to a sufficiently high voltage. Impedance spectroscopy, capacitance–voltage (CV) and current–voltage (IV) analysis are used to verify the possible physical mechanism of the switching operation. Moreover, it is found that the location of the ZnO-NPs could affect the memory and opto-electrical characteristics of the devices, such as the ON/OFF ratio, threshold voltage and turn-on voltage, which can be attributed to the influence of the ZnO-NPs and diffused Al atoms in the bulk of the Alq3 layer.  相似文献   

5.
《Organic Electronics》2008,9(5):816-820
We report on the electrical behaviour of metal–insulator–semiconductor (MIS) structures fabricated on silicon substrates and using organic thin films as the dielectric layers. These insulating thin films were produced by different methods, including spin-coating (polymethylmethacrylate), thermal evaporation (pentacene) and Langmuir–Blodgett deposition (cadmium arachidate). Gold nanoparticles, deposited at room temperature by chemical self-assembly, were used as charge storage elements. In all cases, the MIS devices containing the nanoparticles exhibited hysteresis in their capacitance versus voltage characteristics, with a memory window depending on the range of the voltage sweep. This hysteresis was attributed to the charging and discharging of the nanoparticles from the gate electrode. A maximum memory window of 2.5 V was achieved by scanning the applied voltage of an Al/pentacene/Au nanoparticle/SiO2/p-Si structure between 9 and −9 V.  相似文献   

6.
An organic–inorganic contact was fabricated by forming a thin film of quinoline yellow dye (QY) on a p-Si wafer and evaporating Al metal on the film. The current–voltage (I–V) and capacitance–voltage (C–V) measurements of Al/QY/p-Si heterostructure were applied in dark and room temperature to calculate the characteristic parameters of diode like ideality factor, barrier height and series resistance. Ideality factor and barrier height values were found as 1.23 and 0.87 eV from I–V data, respectively. The series resistance value of the device was determined as 1.8 kΩ by using modified Norde function. The C–V measurements were carried out at different frequencies and it was seen that capacitance value decreased with increasing frequency. Interface state density distribution was calculated by means of I–V measurement. In addition the optical absorption of thin QY film on glass was measured and optical band gap of the film was found as 2.73 eV. Furthermore, I–V measurements of Al/QY/p-Si/Al were taken under illumination between 40 and 100 mW/cm2. It was observed that reverse bias current of the device increased with light intensity. Thus, the heterojunction had a strong response to the light and it can be suitable for electrical and optoelectronic applications like a photodiode.  相似文献   

7.
We report on the specific contact resistance of interfaces between thin amorphous semiconductor Indium Tin Zinc Oxide (ITZO) channel layers and different source/drain (S/D) electrodes (Al, ITO, and Ni) in amorphous oxide thin film transistors (TFTs) at different channel lengths using a transmission line model. All the contacts showed linear current–voltage characteristics. The effects of different channel lengths (200–800 μm, step 200 μm) and the contact resistance on the performance of TFT devices are discussed in this work. The Al/ITZO TFT samples with the channel length of 200 μm showed metallic behavior with a linear drain current-gate voltage (IDVG) curve due to the formation of a conducting channel layer. The specific contact resistance (ρC) at the source or drain contact decreases as the gate voltage is increased from 0 to 10 V. The devices fabricated with Ni S/D electrodes show the best TFT characteristics such as highest field effect mobility (16.09 cm2/V·s), ON/OFF current ratio (3.27×106), lowest sub-threshold slope (0.10 V/dec) and specific contact resistance (8.62 Ω·cm2 at VG=0 V). This is found that the interfacial reaction between Al and a-ITZO semiconducting layer lead to the negative shift of threshold voltage. There is a trend that the specific contact resistance decreases with increasing the work function of S/D electrode. This result can be partially ascribed to better band alignment in the Ni/ITZO interface due to the work function of Ni (5.04–5.35 eV) and ITZO (5.00–6.10 eV) being somewhat similar.  相似文献   

8.
The frequency and voltage dependence of capacitance–voltage (CV) and conductance-voltage (G/ωV) characteristics of the Cr/p-Si metal semiconductor (MS) Schottky barrier diodes (SBDs) were investigated in the frequency and applied bias voltage ranges of 10 kHz to 5 MHz and (−4 V)−(+4 V), respectively, at room temperature. The effects of series resistance (Rs) and density distribution of interface states (Nss), both on CV and G/ωV characteristics were examined in detail. It was found that capacitance and conductance, both, are strong functions of frequency and applied bias voltage. In addition, both a strong negative capacitance (NC) and an anomalous peak behavior were observed in the forward bias CV plots for each frequency. Contrary to the behavior of capacitance, conductance increased with the increasing applied bias voltage and there happened a rapid increase in conductance in the accumulation region for each frequency. The extra-large NC in SBD is a result of the existence of Rs, Nss and interfacial layer (native or deposited). In addition, to explain the NC behavior in the forward bias region, we drew the CI and G/ωI plots for various frequencies at the same bias voltage. The values of C decrease with increasing frequency at forward bias voltages and this decrease in the NC corresponds to an increase in conductance. The values of Nss were obtained using a Hill–Coleman method for each frequency and it exhibited a peak behavior at about 30 kHz. The voltage dependent profile of Rs was also obtained using a Nicollian and Brews methods.  相似文献   

9.
Silicon-oxide–nitride-oxide–silicon devices with nanoparticles (NPs) as charge trapping nodes (CTNs) are important to provide enhanced performance for nonvolatile memory devices. To study these topics, the TiOxNy metal oxide NPs embedded in the HfOxNy high-k dielectric as CTNs of the nonvolatile memory devices were investigated via the thermal synthesis using Ti thin-film oxidized in the mixed O2/N2 ambient. Well-isolated TiOxNy NPs with a diameter of 5–20 nm, a surface density of ~3 × 1011 cm?2, and a charge trap density of around 2.33 × 1012 cm?2 were demonstrated. The writing characteristic measurements illustrate that the memory effect is mainly due to the hole trapping.  相似文献   

10.
《Organic Electronics》2014,15(8):1767-1772
The charge storage behavior of a floating gate memory device using carbon nanotube-CdS nanostructures embedded in Bombyx mori silk protein matrix has been demonstrated. The capacitance – voltage characteristics in ITO/CNT–CdS-silk composite/Al device exhibits a clockwise hysteresis behavior due to the injection and storage of holes in the quantized valence band energy levels of CdS nanocrystals. The enhanced charge injection resulting in increase in memory window is observed at higher sweeping voltages. Nearly frequency independent hysteresis width over a wide range of 100 kHz–2.0 MHz, indicates its origin due to the charge storage in nanocrystals. The memory behavior of carbon nanotube–CdS nanostructures/silk nanocomposite devices has also been demonstrated on polyethylene terephthalate substrates, which may provide the way for flexible, transparent and printable electronic devices.  相似文献   

11.
The electrical and photovoltaic properties of the nanostructure ZnO/p-Si diode have been investigated. The nanostructure ZnO/p-Si diode was fabricated using sol–gel spin coating method. The ideality factor and barrier height of the diode were found to be 3.18 and 0.78 eV, respectively. The obtained n ideality factor is higher than 2, indicating that the diode exhibits a non-ideal behavior due to the oxide layer and the presence of surface states. The nanostructure of the ZnO improves the quality of ZnO/p-Si interface. The diode shows a photovoltaic behavior with a maximum open circuit voltage Voc of 0.26 V and short-circuits current Isc of 1.87×10?8 A under 100 mW/cm2. It is evaluated that the nanostructure ZnO/p-Si diode is a photodiode with the obtained electronic parameters.  相似文献   

12.
《Organic Electronics》2007,8(5):591-600
Hybrid metal–insulator–semiconductor structures based on ethyl-hexyl substituted polyfluorene (PF2/6) as the active polymer semiconductor were fabricated on a highly doped p-Si substrate with Al2O3 as the insulating oxide layer. We present detailed frequency-dependent capacitance–voltage (CV) and conductance–voltage characteristics of the semiconductor/insulator interface. PF2/6 undergoes a transition to an ordered crystalline phase upon thermal cycling from its nematic-liquid crystalline phase, confirmed by our atomic force microscope images. Thermal cycling of the PF2/6 films significantly improves the quality of the (PF2/6)/Al2O3 interface, which is identified as a reduced hysteresis in the CV curve and a decreased interface state density (Dit) from ∼3.9 × 1012 eV−1 cm−2 to ∼3.3 × 1011 eV−1 cm−2 at the flat-band voltage. Interface states give rise to energy levels that are confined to the polymer/insulator interface. A conductance loss peak, observed due to the capture and emission of carriers by the interface states, fits very well with a single time constant model from which the Dit values are inferred.  相似文献   

13.
Organic thin-film transistors (OTFTs) using high dielectric constant material tantalum pentoxide (Ta2O5) and benzocyclobutenone (BCBO) derivatives as double-layer insulator were fabricated. Three metals with different work function, including Al (4.3 eV), Cr (4.5 eV) and Au (5.1 eV), were employed as gate electrodes to study the correlation between work function of gate metals and hysteresis characteristics of OTFTs. The devices with low work function metal Al or Cr as gate electrode exhibited high hysteresis (about 2.5 V threshold voltage shift). However, low hysteresis (about 0.7 V threshold voltage shift) OTFTs were attained based on high work function metal Au as gate electrode. The hysteresis characteristics were studied by the repetitive gate voltage sweep of OTFTs, and capacitance–voltage (CV) and trap loss-voltage (Gp/ω?V) measurements of metal–insulator–semiconductor (MIS) devices. It is proved that the hysteresis characteristics of OTFTs are relative to the electron injection from gate metal to Ta2O5 insulator. The electron barrier height between gate metal and Ta2O5 is enhanced by using Au as gate electrode, and then the electron injection from gate metal to Ta2O5 is reduced. Finally, low hysteresis OTFTs were fabricated using Au as gate electrode.  相似文献   

14.
Polymer memory devices using Au nanoparticles (Au NPs) incorporated poly(N-vinylcarbazole) (PVK) as the active layer and Al films as the electrodes are investigated. The Al/PVK:Au NPs/Al devices exhibit electrical bistability in the IV characteristics and show a conductance difference ratio between the high-resistance state (HRS) and low-resistance state (LRS) by a factor of 105. Furthermore, the Au nanoparticle/PVK hybrid memory device can be programmed and exhibits excellent thermal stability up to 154 °C in ambient atmosphere. The current conduction is dominated by Schottky emission at HRS and exhibits Ohmic behavior at LRS. The dependence of the current conduction on temperature reveals the connection between the conduction character and the energy-band offsets at the metal (Al or Au)–PVK junctions. In addition, the resistive switching is correlated with the width of depletion region in PVK, which varies with the change of hole carrier concentration upon applying electrical field.  相似文献   

15.
All RF sputtering-deposited Pt/SiO2/n-type indium gallium nitride (n-InGaN) metal–oxide–semiconductor (MOS) diodes were investigated before and after annealing at 400 °C. By scanning electron microscopy (SEM), the thickness of Pt, SiO2, n-InGaN layer was measured to be ~250, 70, and 800 nm, respectively. AFM results also show that the grains become a little bigger after annealing, the surface topography of the as-deposited film was smoother with the rms roughness of 1.67 nm and had the slight increase of 1.92 nm for annealed sample. Electrical properties of MOS diodes have been determined by using the current–voltage (IV) and capacitance–voltage (CV) measurements. The results showed that Schottky barrier height (SBH) increased slightly to 0.69 eV (IV) and 0.82 eV (CV) after annealing at 400 °C for 15 min in N2 ambient, compared to that of 0.67 eV (IV) and 0.79 eV (CV) for the as-deposited sample. There was the considerable improvement in the leakage current, dropped from 6.5×10−7 A for the as-deposited to 1.4×10−7 A for the 400 °C-annealed one. The annealed MOS Schottky diode had shown the higher SBH, lower leakage current, smaller ideality factor (n), and denser microstructure. In addition to the SBH, n, and series resistance (Rs) determined by Cheungs׳ and Norde methods, other parameters for MOS diodes tested at room temperature were also calculated by CV measurement.  相似文献   

16.
By employing electric-field-induced optical second-harmonic generation (EFISHG) measurement, we studied the blocking effect of sandwiched Cu-phthalocyanine (CuPc) layer on IZO/pentacene/Cu-phthalocyanine (CuPc)/C60/Al organic solar cells (OSCs). Results evidently showed that the Maxwell–Wagner type interfacial charging appears at both pentacene/CuPc and CuPc/C60 interfaces, depending on the CuPc layer thickness. When the thickness of CuPc layer was 8 nm, the charging at the two interfaces was significantly suppressed and the IV characteristic was improved. CuPc layer is available as a blocking layer for the regulation of interfacial charging induced in IZO/pentacene/C60/Al organic solar cells (OSCs). The blocking effect of the CuPc layer was discussed on the basis of Maxwell–Wagner model analysis.  相似文献   

17.
In this study, we investigated the influence of a buffer layer of molybdic oxide (MoO3) at the metal/organic junction on the behavior of organic base-modulation triodes. The performance of devices featuring MoO3/Al as the emitter electrode was enhanced relative to that of corresponding devices with Au and Ag, presumably because of the reduced in the contact barrier and the prevention of metal diffusion into the organic layer. The device exhibited an output current of ?16.1 μA at VB = ?5 V and a current ON/OFF ratio of 103. Using this architecture, we constructed resistance–load inverters that exhibited a calculated gain of 6.  相似文献   

18.
The properties of ZnO/SiO2/Si surface acoustic wave (SAW) Love mode sensors were examined and optimized to achieve high mass sensitivity. SAW devices A and B, were designed and fabricated to operate at resonant frequencies around 0.7 and 1.5 GHz. The ZnO films grown by pulsed laser deposition on SiO2/Si demonstrated c-axis growth and the fabricated devices showed guided shear horizontal surface acoustic wave (or Love mode) propagation. Acoustic phase velocity in the ZnO layer was measured in both devices A and B and theoretical and experimental evaluation of the mass sensitivity showed that the maximum sensitivity is obtained for devices with ZnO guiding layer thicknesses of 340 nm and 160 nm for devices A and B, respectively. The performance of the SAW sensors was validated by measuring the mass of a well-characterized polystyrene–polyacrylic acid diblock copolymer film. For the optimized sensors, maximum mass sensitivity values were as high as 4.309 μm2/pg for device A operating at 0.7477 GHz, and 8.643 μm2/pg for device B operating at 1.5860 GHz. The sensors demonstrated large frequency shifts per applied mass (0.1–4 MHz), excellent linearity, and extended range in the femto-gram region. The large frequency shifts indicated that these sensors have the potential to measure mass two to three orders of magnitude lower in the atto-gram range.  相似文献   

19.
Titania nanoparticles (TNPs) were synthesized by a sol–gel method in our laboratory using titanium tetrachloride as the precursor and isopropanol as the solvent. The particles׳ size distribution histogram was determined using ImageJ software and the size of TNPs was obtained in the range of 7.5–10.5 nm. The nanoparticle with the average size of 8.5 nm was calculated using Scherrer׳s formula. Homogeneous and spherical nanoparticles were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM) and UV–visible spectroscopy (UV–vis). The X-ray powder diffraction analysis showed that the prepared sample (TNPs) has pure anatase phase. TNPs were deposited on porous polycrystalline silicon (PPS) substrate by electron beam evaporation. The TNPs thickness was 23±2 nm at 10−5 mbar pressure at room temperature. Porosity was performed by an anodization method. Since polycrystalline silicon wafers consist of different grains with different orientations, the pore size distribution in porous layer is non-uniform [1]. Therefore, the average diameter of pores can be reported in PPS layer analysis. Average diameter of pores was estimated in the range of 5 μm which was characterized by FESEM. The nanostructured thin films devices (Al/Si/PPS/TNPs/Al and Al/Si/PPS/Al) were fabricated in the sandwich form by aluminum (Al) electrodes which were also deposited by electron beam evaporation. Electrical measurements (IV curves) demonstrated the semiconducting behavior of thin film devices. The gas sensitivity was studied on exposure to 10% CO2 gas. As a result, conductivity of devices increased on exposure to CO2 gas. The device with TNPs thin film (Al/Si/PPS/TNPs/Al) was more sensitive and, had better response and reversibility in comparison with the device without TNPs thin film (Al/Si/PPS/Al).  相似文献   

20.
Thin film of lead dioxide, α-PbO2, has been grown by thermal evaporation technique on the single crystal of p-Si substrate and heterojunction photodiode, Au/α-PbO2/p-Si/Al, was fabricated. The current-voltage characteristics of the diode have been studied in the temperature ranged from 303 to 373 K and the voltage applied during measurements varied from −1 to 1.5 V. It was found from the (I-V) characteristics of the diode that the conduction mechanisms in the forward bias direction are controlled by the thermionic emission at bias potential ≤0.7 V followed by single trap space charge limited current (SCLC) conduction in the voltage range >0.7 V. The capacitance-voltage characteristics of the device were studied at room temperature in dark condition and it has been shown that the diode is abrupt junction. The carrier concentration on both sides of the depletion layer has been determined. Energy band diagram for α-PbO2/p-Si device was constructed. The device under illumination with light of intensity 20 W/m2 gives acceptable values of photoresponse parameters such as photosensitivity and photoconductivity. The presented photodiode parameters exhibit the typical photosensor applications with reproducibility phenomenon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号