首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
叶面积指数(LAI)遥感估算是植被定量遥感研究的热点之一,监测植被LAI时空变化对于研究陆地生态系统碳循环及全球变化等具有非常重要的意义。在我国西南山区设置10个50km×50km的观测样区作为研究区,其中包括5个森林生态系统样区、3个农田生态系统样区和2个草地生态系统样区。分别获取不同优势植被类型LAI地面实测数据,结合同期获取的遥感数据,考虑地形因素影响,基于偏最小二乘原理分别构建各样区LAI遥感估算模型,并采用交叉验证的方式对模型精度进行评价。结果表明:考虑了海拔、坡度和坡向等地形因子的森林LAI遥感反演模型与未考虑地形变量的模型相比,其验证精度有所提高,R2由0.30~0.75提高至0.50~0.80,RMSE由0.52~0.93m2/m2降低至0.48~0.89m2/m2;所有样区优势植被类型LAI反演模型验证R2在0.40~0.80之间,RMSE在0.22~0.89m2/m2之间。发展的LAI遥感估算方法有助于认知山地植被LAI反演的地形效应问题,可为进一步的山地植被长势监测提供科学依据。  相似文献   

2.
借助植被辐射传输模型,利用遥感观测数据估算LAI是一种较为可靠和稳健的反演方法。然而,地表的复杂性、遥感观测的有限性以及自相关性导致遥感数据包含的信息量不足,不能完全支持LAI等地表参数的估算,易造成“病态”反演。在遥感反演过程中引入先验知识能够有效地解决该问题。研究基于遥感数据提取LAI先验信息,并将其用于代价函数的构建,利用PROSAIL辐射传输模型和遗传算法,分别在500 m和250 m尺度反演LAI。将高空间分辨率LAI分别升尺度到500 m和250 m,验证对应尺度LAI结果,评价引入先验信息对于提高LAI反演精度的作用。研究表明,引入先验信息有助于提高不同分辨率下LAI反演精度,且先验信息的质量一定程度上也影响着LAI反演结果。与未加入先验信息的LAI反演结果相比,以MODIS LAI产品作为先验信息反演的500 m尺度LAI结果精度R2由0.55提高至0.65,RMSE由1.29下降至0.38。在250 m尺度,以500 m LAI反演结果作为先验信息反演的叶面积指数,其精度优于以MODIS LAI产品为先验知识的估算结果,验证精度R2增加了0.08,RMSE减少了0.18。研究使用的先验信息主要来自遥感数据本身,没有地面实测数据的参与,在此基础上发展的多分辨率LAI反演方法具有估算大区域尺度LAI的应用潜力。  相似文献   

3.
借助植被辐射传输模型,利用遥感观测数据估算LAI是一种较为可靠和稳健的反演方法。然而,地表的复杂性、遥感观测的有限性以及自相关性导致遥感数据包含的信息量不足,不能完全支持LAI等地表参数的估算,易造成“病态”反演。在遥感反演过程中引入先验知识能够有效地解决该问题。研究基于遥感数据提取LAI先验信息,并将其用于代价函数的构建,利用PROSAIL辐射传输模型和遗传算法,分别在500 m和250 m尺度反演LAI。将高空间分辨率LAI分别升尺度到500 m和250 m,验证对应尺度LAI结果,评价引入先验信息对于提高LAI反演精度的作用。研究表明,引入先验信息有助于提高不同分辨率下LAI反演精度,且先验信息的质量一定程度上也影响着LAI反演结果。与未加入先验信息的LAI反演结果相比,以MODIS LAI产品作为先验信息反演的500 m尺度LAI结果精度R2由0.55提高至0.65,RMSE由1.29下降至0.38。在250 m尺度,以500 m LAI反演结果作为先验信息反演的叶面积指数,其精度优于以MODIS LAI产品为先验知识的估算结果,验证精度R2增加了0.08,RMSE减少了0.18。研究使用的先验信息主要来自遥感数据本身,没有地面实测数据的参与,在此基础上发展的多分辨率LAI反演方法具有估算大区域尺度LAI的应用潜力。  相似文献   

4.
叶面积指数(Leaf Area Index, LAI)是作物长势监测及产量估算的重要指标,准确高效的LAI反演对农田经济的宏观管理具有重要作用。研究探索了联合无人机激光雷达(Light Detec-tion and Ranging, LiDAR) 和高光谱数据反演玉米叶面积指数的潜力,并分析了LiDAR数据不同采样尺寸、高度阈值、点密度对LAI反演精度的影响同时确定三者的最优值。该研究分别从重采样的LiDAR数据和高光谱影像中提取了LiDAR变量和植被指数,然后基于偏最小二乘回归(Partial Least Square Regression,PLSR)和随机森林(Random Forest, RF) 回归两种算法分别利用LiDAR变量、植被指数、联合LiDAR变量和植被指数构建预测模型,并确定反演玉米LAI的最优预测模型。结果表明:反演玉米LAI的最优采样尺寸、高度阈值、点密度分别为5.5 m、0.55 m、18 points/m2,研究发现最高的点密度(420 points/m2)并没有产生最优的玉米LAI反演精度,因此单独依靠增加点密度的方法提高LAI的反演精度并不可靠。基于LiDAR变量获得的LAI反演精度(PLSR:R2=0.874,RMSE=0.317;RF:R2=0.942,RMSE=0.222)高于基于植被指数获得的LAI反演精度(PLSR: R2=0.741,RMSE=0.454;RF:R2=0.861,RMSE=0.338),而使用组合变量构建预测模型的反演精度(PLSR:R2=0.885, RMSE=0.304;RF:R2=0.950,RMSE=0.203)优于使用单一变量建立的LAI预测模型,其中利用联合LiDAR变量和植被指数建立的随机森林回归模型为最优预测模型。因此,将两种数据源融合在提高植被LAI反演精度方面具有一定的潜力。  相似文献   

5.
波形激光雷达(Light Detection And Ranging, LiDAR)已经大量用于森林叶面积指数(Leaf Area Index, LAI)估算,但是波形LiDAR数据估算森林LAI易受地形影响。地形坡度引起的波形展宽使得地面回波和植被冠层回波信息混合在一起,难以得到准确的地面回波和冠层回波,进而影响到LAI估算精度。为了估算不同地形坡度条件下的LAI,本文采用一种坡度自适应的方法处理机载LVIS和星载GLAS波形数据。通过坡度自适应的方法得到地面波峰位置,基于高度阈值来区分地面回波和冠层回波,进而得到能量比值用于LAI估算。基于LVIS和GLAS数据,估算了不同森林站点的LAI,并利用实测LAI数据进行检验。结果表明:利用波形LiDAR数据可以估算森林LAI,坡度自适应方法可以改善地形的影响,提高LAI估算精度。对于机载LVIS,估算新英格兰森林LAI精度为R2=0.77和RMSE=0.21;对于星载GLAS,估算塞罕坝森林LAI精度为R2=0.81和RMSE=0.28。无论机载还是星载数据,该方法都有着较高的精度,对于复杂地形估算LAI具有一定潜力。  相似文献   

6.
基于无人机高光谱数据的玉米叶面积指数估算   总被引:1,自引:0,他引:1  
无人机高光谱遥感是低成本、高精度获取精细尺度农作物生物物理参数和生物化学参数的新型手段,以此快速反演叶面积指数(Leaf Area Index, LAI)对作物长势评价、产量预测具有重要意义。以山东禹城市玉米为研究对象,利用PROSAIL辐射传输模型模拟玉米冠层反射率获取LAI特征响应波段结合相关性定量分析获取对LAI变化最为敏感的波段,并以此计算6种植被指数(Vegetation Index,VI),利用6种回归模型分别对单一特征波段和VI进行反演建模,以实测LAI评定模型精度。研究表明,光谱反射率中516、636、702、760和867 nm等波段对LAI变化最为敏感,以此建立的单一特征波段反演模型预测LAI精度R2为0.44~0.58;RMSE为0.16~0.18,其中636 nm建立的模型(LAI=21.86exp(-29.47R636))相比其他反演模型预测精度较高(R2=0.58,RMSE=0.16);6种植被指数与LAI高度相关,相关性系数R 2为0.85~0.86,以此建立的反演模型相比单一特征波段反演模型精度有所提高,R2为0.66~0.72,RMSE为0.12~0.14;其中mNDVI构建的LAI估算模型(LAI=exp(2.76~1.77/mNDVI))精度最高(R2=0.72,RMSE=0.13)。无人机高光谱遥感是快速、无损监测农作物生长信息的有效手段,为指导精细化尺度作物管理提供依据。  相似文献   

7.
无人机高光谱遥感是低成本、高精度获取精细尺度农作物生物物理参数和生物化学参数的新型手段,以此快速反演叶面积指数(Leaf Area Index, LAI)对作物长势评价、产量预测具有重要意义。以山东禹城市玉米为研究对象,利用PROSAIL辐射传输模型模拟玉米冠层反射率获取LAI特征响应波段结合相关性定量分析获取对LAI变化最为敏感的波段,并以此计算6种植被指数(Vegetation Index,VI),利用6种回归模型分别对单一特征波段和VI进行反演建模,以实测LAI评定模型精度。研究表明,光谱反射率中516、636、702、760和867 nm等波段对LAI变化最为敏感,以此建立的单一特征波段反演模型预测LAI精度R2为0.44~0.58;RMSE为0.16~0.18,其中636 nm建立的模型(LAI=21.86exp(-29.47R636))相比其他反演模型预测精度较高(R2=0.58,RMSE=0.16);6种植被指数与LAI高度相关,相关性系数R 2为0.85~0.86,以此建立的反演模型相比单一特征波段反演模型精度有所提高,R2为0.66~0.72,RMSE为0.12~0.14;其中mNDVI构建的LAI估算模型(LAI=exp(2.76~1.77/mNDVI))精度最高(R2=0.72,RMSE=0.13)。无人机高光谱遥感是快速、无损监测农作物生长信息的有效手段,为指导精细化尺度作物管理提供依据。  相似文献   

8.
借助植被辐射传输模型,利用遥感观测数据估算LAI是一种较为可靠和稳健的反演方法。然而,地表的复杂性、遥感观测的有限性以及自相关性导致遥感数据包含的信息量不足,不能完全支持LAI等地表参数的估算,易造成"病态"反演。在遥感反演过程中引入先验知识能够有效地解决该问题。研究基于遥感数据提取LAI先验信息,并将其用于代价函数的构建,利用PROSAIL辐射传输模型和遗传算法,分别在500 m和250 m尺度反演LAI。将高空间分辨率LAI分别升尺度到500 m和250 m,验证对应尺度LAI结果,评价引入先验信息对于提高LAI反演精度的作用。研究表明,引入先验信息有助于提高不同分辨率下LAI反演精度,且先验信息的质量一定程度上也影响着LAI反演结果。与未加入先验信息的LAI反演结果相比,以MODIS LAI产品作为先验信息反演的500 m尺度LAI结果精度R2由0.55提高至0.65,RMSE由1.29下降至0.38。在250 m尺度,以500 m LAI反演结果作为先验信息反演的叶面积指数,其精度优于以MODIS LAI产品为先验知识的估算结果,验证精度R2增加了0.08,RMSE减少了0.18。研究使用的先验信息主要来自遥感数据本身,没有地面实测数据的参与,在此基础上发展的多分辨率LAI反演方法具有估算大区域尺度LAI的应用潜力。  相似文献   

9.
山地TM遥感影像大气辐射校正模型改进及地表反射率反演   总被引:3,自引:0,他引:3  
亓雪勇  田庆久 《遥感信息》2007,(4):3-8,I0001
基于光学遥感辐射传输理论,着重阐述了地形对天空散射光相互作用及邻近像元的影响,提出了一种改进的山地大气辐射校正模型及地表反射率反演方法;基于IDL编程实现模型算法,选择贵州黎平县丘陵森林覆盖典型研究区,结合Landsat-5TM和1∶50000DEM数据进行了实例验证、评价与分析。研究结果表明,本研究方法能够同时有效消除TM数据的大气与地形影响,提高地表反射率反演精度与数据质量,将进一步推动山地光学遥感数据的定量分析与应用。  相似文献   

10.
叶面积指数(Leaf Area Index, LAI)是反映作物生长状态的重要指标,常用植被指数来反演。传统的反演模型大都是基于多变量的多元回归模型,而基于双变量的多元回归模型在LAI反演中的潜力还未被充分发掘。通过提取卫星影像的光谱特征和纹理特征,基于皮尔逊相关系数分析各个遥感特征与冬小麦LAI之间的相关性,利用简单回归模型(Simple Regression, SR)、多元线性回归模型(Multiple Linear Regression,MLR)和随机森林回归模型(Random Forest Regression,RFR)开展遥感特征与冬小麦LAI之间的关系模型构建反演研究,并结合精度指标(决定系数R2,均方根误差RMSE,相对均方根误差rRMSE)判定各反演模型的反演精度,以提出最优的反演模型。研究表明:(1)所有植被指数和部分纹理指数在反演LAI中取得了较好的反演效果(R2>0.6)。其中,通用归一化植被指数(Universal Normalized Vegetation Index, UNVI)在各植被指数中表现最好(R  相似文献   

11.
无人机高光谱遥感是低成本、高精度获取精细尺度农作物生物物理参数和生物化学参数的新型手段,以此快速反演叶面积指数(Leaf Area Index,LAI)对作物长势评价、产量预测具有重要意义。以山东禹城市玉米为研究对象,利用PROSAIL辐射传输模型模拟玉米冠层反射率获取LAI特征响应波段结合相关性定量分析获取对LAI变化最为敏感的波段,并以此计算6种植被指数(Vegetation Index,VI),利用6种回归模型分别对单一特征波段和VI进行反演建模,以实测LAI评定模型精度。研究表明,光谱反射率中516、636、702、760和867 nm等波段对LAI变化最为敏感,以此建立的单一特征波段反演模型预测LAI精度R~2为0.44~0.58;RMSE为0.16~0.18,其中636 nm建立的模型(LAI=21.86exp(-29.47R636))相比其他反演模型预测精度较高(R~2=0.58,RMSE=0.16);6种植被指数与LAI高度相关,相关性系数R2为0.85~0.86,以此建立的反演模型相比单一特征波段反演模型精度有所提高,R~2为0.66~0.72,RMSE为0.12~0.14;其中mNDVI构建的LAI估算模型(LAI=exp(2.76~1.77/mNDVI))精度最高(R~2=0.72,RMSE=0.13)。无人机高光谱遥感是快速、无损监测农作物生长信息的有效手段,为指导精细化尺度作物管理提供依据。  相似文献   

12.
背包式激光雷达(Backpack Laser Scanning, BLS)在森林资源调查中具有很大的应用潜力,但在复杂地表情景下,单木材积和林分蓄积量提取精度存在较大不确定性。以广西高峰林场为研究区,利用随机森林方法,基于BLS点云数据对单木材积和样地蓄积量进行估测。首先,对BLS点云进行单木分割,提取单木胸径(DBH)、树高(Htree)、冠幅直径(CD)、冠幅面积(CA)、冠幅体积(CV)、郁闭度(CC)、间隙率(GF)和叶面积指数(LAI)共8个特征参数,并计算56个分层高度指标(高度百分比、累积高度百分比、变异系数、冠层起伏率等)。然后,通过随机森林算法构建单木材积估测模型,并对比各种参数组合的预测精度。得到结果: ①仅用8个单木结构特征参数进行建模,估测精度为: R2=0.83、RMSE=0.097 m3; ②加入分层高度指标的模型估测精度有所提升: R2=0.87、RMSE=0.087 m3;③通过Boruta算法进行变量筛选,输入参数从64个减少至52个,估测精度差异不大: R2= 0.87、RMSE=0.087 m3;④样方蓄积量估测精度为: R2=0.97,RMSE=0.703 m3·ha-1。结果表明,基于BLS点云建立随机森林单木材积估测模型可以较好地估测单木材积,样方蓄积量估测精度高。  相似文献   

13.
吉林一号光谱星的发射提高了我国对地观测能力,并且在农业定量反演方面具有较大的潜力,为了准确、有效地反演农作物关键参数,分析吉林一号光谱星影像的反演能力具有重要意义。以内蒙古乌拉特前旗、正蓝旗、科尔沁右翼前旗的农田为研究区,基于吉林一号光谱星影像,使用优化后的PROSAIL模型和曲线匹配算法,对不同物候期内的玉米和水稻叶面积指数(LAI)进行了反演,并结合实测LAI数据进行了精度验证。结果表明:优化后的PROSAIL模型其参数范围和参数步长更适用于农作物LAI反演,在保证精度的前提下精简了查找表的容量;基于特征值的曲线匹配算法在空间分布高度一致、误差绝对值均值为0.41的情况下,计算效率平均提高了41.43%;研究区不同物候期内的玉米和水稻LAI反演精度R2为0.72~0.9,RMSE为0.32~0.49。其中,玉米开花期精度最高(R2=0.9,RMSE=0.4),玉米成熟期精度最低(R2=0.72,RMSE=0.47)。综上所述,基于吉林一号光谱星影像反演农作物LAI具有精度高、误差小的特点,研究结果可为该数据在农作物L...  相似文献   

14.
叶面积指数(Leaf Area Index,LAI)作为表征不同作物生长状况的基本参数,是农业精细化管理及农田生态系统建模的关键。我国农田作物种植比较离散,受地表空间结构非均一性和反演模型非线性等因素影响,不同尺度遥感数据估算的作物LAI存在一定的差异,即农田作物LAI的遥感反演普遍存在尺度效应问题。以包头遥感综合验证场农业示范区为研究区,利用无人机高光谱数据结合PROSPECT+SAIL模型构建典型农作物区多类型作物的查找表(Look-Up-Table,LUT)反演农田LAI,研究查找表用于玉米、马铃薯、向日葵、瓜地等不同作物LAI反演的适用性和精度;通过无人机高光谱数据聚合获得多尺度遥感数据源,结合Taylor展开理论和计算几何模型,提出了一种既考虑类间差异又考虑类内异质性的尺度转换模型,定量描述多种作物混合的非均一地表LAI反演过程中的尺度效应特征。结果表明:基于分类和参数敏感性分析的LUT方法能很好地应用于包头典型农作物区多类型混合作物LAI反演,总估算精度为相关系数R~2=0.82、均方根误差RMSE=0.43m~2/m~2。随着反演尺度的增加,作物类间差异造成的反演偏差明显高于类内异质性,利用本文所提出的尺度转换模型均能较好纠正低分辨率LAI反演的尺度效应问题。  相似文献   

15.
地形校正是提高复杂地形区地表参数遥感定量化反演精度的重要手段。当前广泛应用的遥感叶面积指数产品(Leaf Area Index, LAI)多具有一定的地形误差,减少地形影响、提升其产品精度有着非常重要的意义。以我国江西省千烟洲地区为研究区域,利用地面实测LAI数据、LandsatTM数据和高程数据等,基于高程标准差和GLOBMAP LAI产品值的关系,建立面向叶面积指数产品的地形校正模型,利用这一模型对GLOBMAP LAI产品进行地形校正。结果表明:校正后的LAI与地面实测数据更为接近,LAI产品与地面测量值的RMSE由2.11下降到2.04;校正后LAI产品的标准差由2.08下降至1.69,LAI产品的地形误差得到了较好的改正。该方法较好地完成了LAI产品的地形校正,进一步提高了产品精度,具有一定的实用价值。  相似文献   

16.
内陆水体中浮游植物的存在对悬浮物(TSM)遥感反演模型精度具有一定的影响,藻类丰度会导致水体遥感反射率降低。实验基于中国、澳大利亚和美国内陆水体的372个采样点(4个数据集)水质分析和光谱实测数据,构建内陆水体遥感反射率与TSM的相关关系,建立最优波段比模型(OBR),并分析了藻类颗粒物存在对该模型精度的影响。由于水质的不均一性,不同区域的水质参数敏感波段存在差异,因此各数据集用于建模的最优波段比值不同。结果表明,OBR模型精度较高,误差较小,中国水体模型验证均具有较好效果(石头口门水库:R2=0.87,RMSE=14.1 mg/L;查干湖:R2=0.82,RMSE=23.6 mg/L),澳大利亚水体模型验证效果最佳,R2值高达0.95(RMSE=4.2 mg/L),美国水体模型精度较低(R2=0.78,RMSE=3.7 mg/L)。研究发现,模型精度受水体叶绿素(Chla)浓度和Chla/TSM比率影响,当水体以TSM浓度较高的非藻类颗粒物为主时(如中国石头口门水库和南澳洲地区水体数据集),最优波段比值模型表现更好;而当水体以浮游植物为主时,水体中的浮游植物的丰度会使光谱信号复杂化,从而限制或降低TSM浓度遥感算法的精度(如美国印第安纳州中部水库数据集)。  相似文献   

17.
森林地上生物量(AGB)是评价森林生态系统功能的重要参数,遥感是获取区域尺度AGB的有效手段。以内蒙古根河市为研究区,利用TM遥感影像数据和33个森林样地调查数据,基于四尺度几何光学模型的森林AGB遥感估算方法,首先,基于样地观测数据建立树冠面积(SA)估算AGB的方程;再利用四尺度几何光学模型建立由冠层反射率反演SA的查找表,由TM影像反演SA,进而估算AGB。在全部33个样地,估算的AGB与观测数据的一致性(RMSE=20.8t·hm-2,R2=0.45)明显优于基于差值植被指数(DVI)(RMSE=27.7t·hm-2,R2=0.09)和混合像元分解(SMA)(RMSE=27.6t·hm-2,R2=0.02)方法建立的统计模型的估算结果。利用19个针叶林样地的观测数据验证表明,估算的AGB的RMSE和R2分别为20.8t·hm-2和0.53,利用DVI估算的AGB的RMSE和R2分别为31.5t·hm-2和0.18,利用SMA方法估算的AGB的RMSE和R2分别为31.8t·hm-2和0.14;对于14个阔叶林样地,估算的AGB的RMSE和R2分别为20.9t·hm-2和0.47,利用DVI估算的AGB的RMSE和R2分别为21.4t·hm-2和0.01,利用SMA方法估算的AGB的RMSE和R2分别为20.6t·hm-2和0.11。结果表明:通过反演与AGB紧密联系的SA,进行AGB的遥感估算是一种有效可行的技术方法。  相似文献   

18.
水体叶绿素a浓度估算是水质参数遥感监测的重要内容,由于采样时间和地点的限制,传统估算模型的参数和形式具有较大的时间和空间依赖性。光谱平滑可以突出不同数据集的共同特征,从而增加模型的预测精度,因此考虑使用平滑方法来提高水体叶绿素a浓度估算模型的应用精度。利用太湖2004年夏季和2011年春季共4个月的数据,对比分析了移动平均、多项式平滑和核回归平滑处理前后浑浊水体实测反射光谱的变化,以及该变化对叶绿素a浓度三波段遥感估算模型和模型应用精度的影响。结果表明:核回归平滑处理后的光谱数据建立的三波段模型的残差正态分布更好,估算模型更为稳健。将2004年7月数据建立的模型用于8月数据,估算的叶绿素a浓度的RMSE从平滑前的33.56 mg/m3降低到了平滑后的25.60 mg/m3;将2011年3月建立的模型用于4月数据,估算的叶绿素a浓度的RMSE从平滑前的16.68 mg/m3降低到了平滑后的10.57 mg/m3。由此可以认为,实测光谱的核回归平滑处理有助于提高叶绿素a浓度三波段模型的应用精度,且对于叶绿素a浓度变化较大的夏季数据的改进效果更显著。  相似文献   

19.
卫星遥感反演的气溶胶光学深度(AOD)产品已被广泛应用于近地面PM2.5浓度的估算。已有研究表明通过构建AOD和PM2.5之间的高级统计模型—线性混合效应模型(LME)可以有效获取近地面PM2.5浓度的空间分布,但由于引入了大量的气象和土地利用等因子,使得模型对变量的解译能力有所降低。为此,基于MODIS AOD(空间分辨率:3 km),以我国东部长江三角洲—福建—广东(YRD-FJ-GD)为研究区,构建了两种非参数机器学习模型,即支持向量机(SVM)和随机森林(RF)模型,来估算2018年YRD-FJ-GD地区的近地面PM2.5浓度,并将其与线性混合效应模型(LME)的估算结果进行对比。研究发现,3种模型估算的PM2.5浓度与地面实测值之间的R2均高于0.6,其中,RF模型的估算精度最优,模型拟合的R2高达0.91,比SVM模型(R2=0.79)和LME模型(R2=0.64)的估算结果分别提高了13%和30%;且RMSE(~9.07 μg/m3)也远低于LME(~19.09 μg/m3)和SVM模型(~17.29 μg/m3)。此外,由随机森林(RF)模型估算的2018年YRD-FJ-GD地区的PM2.5空间分布显示,长江三角洲(YRD)地区的年均PM2.5浓度最高(>46 μg/m3),其次为广东省(GD),福建地区(FJ)的年均PM2.5浓度最低(<37 μg/m3);4个季节的平均PM2.5浓度则呈现冬季(46.32 μg/m3)>春季(38.80 μg/m3)>秋季(36.15 μg/m3)>夏季(30.16 μg/m3)的分布格局。研究结果表明:与高级统计模型(LME)和机器学习(SVM)相比,随机森林(RF)模型能更好地应用于YRD-FJ-GD地区的PM2.5浓度估算。  相似文献   

20.
玉米叶面积指数与高光谱植被指数关系研究   总被引:6,自引:0,他引:6  
探讨以不同的植被指数建立的高光谱模型对玉米叶面积指数LAI的反演精度。实测不同水肥耦合作用下,玉米冠层的高光谱反射率与叶面积指数(Leaf Area Index)数据,采用高光谱红光波段(631~760 nm)与近红外波段(760~1 074 nm)逐波段构建NDVI、RVI、DVI、TSAVI、PVI植被指数,分别找出与LAI具有最佳相关性波段组合的植被指数,建立玉米LAI估算模型。结果显示,与LAI具有佳相关性的波段组合分别是NDVI(R760,R990)、RVI(R760,R1001)、DVI(R677,R1070)、TSAVI(R 760,R 975)、PVI(R658,R966),它们反演玉米LAI的确定性系数分别:R2>0.72、R2>0.74、R2=0.95、R2>0.79、R2>0.95。结果表明,在玉米的整个生长季的47个样本中,通过PVI和DVI方式建立的遥感估算模型能够较为准确地估算玉米LAI,TSAVI次之,NDVI、RVI稍差。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号