共查询到19条相似文献,搜索用时 281 毫秒
1.
用于SAR图像分割的第二代Bandelet域HMT-3S模型 总被引:1,自引:0,他引:1
针对传统的基于变换域隐马尔可夫树(Hidden Markov Tree,HMT)模型的SAR图像分割方法不能得到较满意的区域一致性结果和较准确的分割边缘的问题,提出了一种基于第二代Bandelet域HMT-3S模型的SAR图像分割方法(BHMT-3Sseg).HMT-3S模型是一种融合了子带间相关性的HMT模型,在描述图像纹理特征时,更具合理性.BHMT-3Sseg方法采用HMT-3S模型对图像的第二代Bandelet系数建模,通过HMT-3S模型参数的训练、各尺度似然值的计算和基于邻域背景的多尺度融合,实现对SAR图像的分割,既能得到较为准确和连续的边缘,也增强了分割结果的区域一致性.实验表明,本文方法BHMT-3Sseg对SAR图像分割是可行有效的. 相似文献
2.
基于Contourlet域HMT模型的多尺度图像分割 总被引:8,自引:5,他引:8
基于Contourlet系数分布统计特性,结合隐马尔可夫树(HMT)模型和贝叶斯准则提出一种新的图像分割算法.为了更有效保持Contourlet域不同尺度间的信息,提出一种新的加权邻域背景模型,给出了基于高斯混合模型的象素级分割算法和基于新的背景模型的多尺度融合算法.分别选择合成纹理图像、航拍图像和SAR图像进行实验,并与小波域HMTseg方法进行比较以说明算法的有效性.对合成纹理图像给出错分概率作为评价参数.实验结果表明本文方法不但在边缘信息和方向信息保持上有明显改进,而且错分概率明显降低,对真实图像得到了理想的分割效果. 相似文献
3.
为了提高分割结果一致性,更为详细地凸显激光图像特征,提出一种基于隐马尔科夫模型的激光主动成像图像分割方法.通过小波转换获得图像同一坐标的不同频带信息,同时依靠二维多分辨率分解划分噪声,构建尺度空间,依据Wiener滤波与高斯混合模型去除对图像内冗余去噪,将处理后图像储存在尺度空间内,使用小波域隐马尔科夫模型提取图像的边... 相似文献
4.
改进了传统的基于小波域隐马尔科夫树模型的图像分割方法.由于传统方法均为直接选择小波子带系数作为训练特征,不能直接得到像素级分割结果;同时传统方法在后融合方面对所有尺度均采用同一种上下文背景,而忽略不同尺度上初分割类标志图的特点.因此,本文在粗分割阶段首先处理了训练时参数设置的问题,并选取了更能表征纹理的特征,能直接得到像素级分割结果;在多尺度融合阶段,充分利用不同尺度上类标志图的特性,不仅考虑粗尺度信息对融合结果的影响也考虑了细尺度信息对结果的影响.实验表明本文算法的视觉效果好干与本文进行比较的Choi提出的HMTseg以及孙强提出的WD-HMTseg遥感图像分割算法. 相似文献
5.
复杂背景下的运动目标分割技术是近年来多媒体通信技术的研究热点之一。文中提出一种基于SNAKE模型的运动目标分割技术。首先,利用运动检测的方法,从视频图像中粗略提取出运动目标;然后再利用SNAKE模型收敛到更为精确的物体边缘。模拟实验的结果表明,该方法对运动目标的提取有较好的分割效果。 相似文献
6.
7.
基于SVM能量模型的改进主动轮廓图像分割算法研究 总被引:3,自引:1,他引:3
为克服经典主动轮廓模型曲线内外区域能量定义在复杂目标与背景分布情况下的不足,本文将高效的支持向量机有监督学习分类器引入基于Mumford-shah模型的主动轮廓图像分割算法中,提出了基于SVM能量模型的改进主动轮廓图像分割方法.该方法首先利用支持向量机的分类结果对于封闭曲线的内外区域分别构造了一种新的图像能量表示方法,因为分割过程充分利用了有监督学习策略,使得本文提出的算法具有更高的稳定性和更加广泛的适用范围,特别是对目标灰度分布不均或存在多纹理的目标也可以得到较好的分割结果.分割时,首先利用SVM实现粗分割得到目标初始轮廓,然后利用改进的Mumford-shah主动轮廓模型进行精确分割,采用粗分割策略一方面可以大大提高分割速度,另一方面也可以提高了算法的自动化程度.对比实验结果表明本文提出的算法具有更大灵活性和更好的分割性能. 相似文献
8.
9.
10.
11.
传统的基于Contourlet变换的图像融合方法大都 忽略了Contourlet系数之间 的相关性,导致特征信息的丢失。本文根据隐马尔可夫树(HMT)模型的两种状态和 3组概率确定能有效捕获尺度间、尺度内的Contourlet系数特性的似然概率,设计了图像融 合规则。实验结果表明,Contourlet域HMT模型应用于图像融合领域,能充分挖掘数据之间 的相关性,为融合图像提取更全面、准确的特征纹理信息。 相似文献
12.
利用Chan-Vese模型,对多相位图像实现了串行分层分割。首先得到目标和背景2个子区域,然后判断各子区域内部是否仍包含有感兴趣的目标,如果有,则对该子区域再次采用Chan-Vese模型进行分割,如此迭代直到分割出图像中所有的目标。较之采用Mumford-Shah模型,本文方法计算简单,而且对多相位图像中的目标定位准确,每一层分割都可以得到有意义的区域。实验表明,本文方法可以有效、准确地实现对多相位图像的分割。 相似文献
13.
为了更详细地研究隐马尔科夫模型在图像识别中的应用,以指纹识别为例,纵向总结了几种基于隐马尔科夫模型的指纹图像识别算法,包括一维隐马尔科夫模型、伪二维隐马尔科夫模型、二维模型及一维模型组。分别从时间复杂度、识别精确度等方面总结出这四种隐马尔科夫模型在图像识别时的优缺点,得出不同待识别图像适合使用的识别模型的结论。 相似文献
14.
15.
基于隐马尔可夫模型的车牌自动识别技术 总被引:2,自引:0,他引:2
文中提出了一种车牌字符识别的新方法,用二维隐马尔可夫模型方法识别车牌中的汉字,用伪二维隐马尔可夫模型(P2D-HMM)方法识别车牌中的英文字符及阿拉伯数字。该算法适用于不同的字符大小、字符倾斜、污损等情况,抗噪声能力强。字符识别正确率达94%以上,满足实用技术的要求。 相似文献
16.
马尔可夫化的多尺度FCM在影像分割中的应用 总被引:1,自引:1,他引:0
为了同时处理影像分割问题中的随机性与模糊性,提出了一种多尺度(MR,multi-resolu-tion,马尔可夫随机场(MRF,markov random field)模型下的模糊C均值(FCM,fuzzy C-means)聚类分割算法(MR-MRF-FCM)。利用FCM算法能够处理影像模糊性的优点、MRF模型描述空间关系的长处以及小波的多尺度分析的优点,先对影像进行多尺度小波分解,并对小波系数建立MRF,进而用MR-MRF中的条件概率矩阵代替FCM算法的隶属度矩阵。实验结果从视觉效果和定量指标两方面表明,本文方法优于经典的MRF、多尺度MRF、FCM和核FCM等方法。 相似文献
17.
现有多频带频谱感知方法经常利用宽带频谱的稀疏性来实现检测,当频谱占用率较高时具有较差的性能。针对这一问题,提出了一种基于相邻频带状态的多频带频谱感知方法。首先,通过引入黏性因子,建立了多频带状态和观测值的黏性隐马尔可夫模型。接着,详细分析了黏性隐马尔可夫模型中参数的迭代更新方式。最后,通过估计各频段观测值的后验均值实现了多频带频谱感知。仿真结果表明,不管宽带频谱是否具有稀疏性,所提方法的检测性能都优于传统方法,且在虚警概率为0.1、频带平均占用率为50%、平均信噪比为?12 dB时能达到接近0.99的检测概率,比其他方法的检测概率提升了约30%。另外,所提方法的收敛速度快于已有方法,因此具有更低的计算复杂度。 相似文献
18.
针对多光谱遥感图像的特点,结合图谱聚类、Co ntourlet系数分布的统计特性和多尺度Markov模型, 提出了一种基于Contourlet域图谱聚类和多尺度Markov模型的分割(CSCMMS)方法。首先对 待分割图像进行Contourlet变换,利用图谱聚类对最粗尺度低频图像聚类得到可靠的初始分 割结果;然后 利用互信息构造Contourlet域的多尺度Markov模型,结合多尺度、多方向的图像信息将低频 图像的初始分 割结果逐尺度传递到最细尺度,得到原始图像的分割。对合成图像和多光谱遥感图像的实验 结果表明,提 出方法在边缘信息保持和噪声敏感性上具有明显改进,错分率和运算时间进一步降低。 相似文献
19.
基于CV模型的水平集分割是医学图像分割的一个重要的分割手段。医学图像分割要求精度高,速度快。传统的处理方式效率比较低,不能满足医学图像的分割要求。针对这一缺点,本文提出新的分割模式。首先,在分割过程中间断的对图像进行窗口化处理,减少演化过程所需计算的数据量。同时使活动轮廓的演化速度伴随窗口规模进行调整,减少演变所需的迭代次数。实验表明,改进之后分割方法能够极大的提高分割速度,同时图像细节部分的分割也有更高的精度。 相似文献