首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
金属有机框架(MOFs)材料具有较大比表面积和可调孔径等特点,已成为近年来的研究热点,它在催化、储氢、药物缓释和吸附分离等领域拥有广阔的应用前景。但MOFs材料回收困难的缺点限制了其推广应用,因此人们将传统MOFs材料与功能性纳米粒子结合,形成新型纳米复合材料,这极大地拓宽了MOFs的应用范围。介绍了MOFs与磁性纳米颗粒结合构成磁性金属有机框架(MMOFs)材料的制备方法,及其在环境污染物检测分离领域中的应用进展。  相似文献   

2.
作为自然界储量最为丰富、可持续、可再生、环境友好的一种天然原材料,纤维素已成为高分子材料领域的研究热点之一。其中纤维素气凝胶兼具超高孔隙率、超低密度纳米多孔材料的优点和高分子材料韧性好、易加工的特性,有诸多优异的性能,是继无机气凝胶和合成高分子气凝胶之后新一代气凝胶材料,正受到人们广泛的关注。介绍了作者课题组利用离子液体制备纤维素气凝胶方面的研究进展,主要包括:利用离子液体溶解结合超临界CO_2干燥技术制备纤维素气凝胶;纤维素基复合气凝胶材料的制备;以及纤维素气凝胶材料作为锂离子电池凝胶聚合物电解质的应用。  相似文献   

3.
非贵金属催化剂代替贵金属催化剂已成为一种趋势,但非贵金属的催化剂活性难以满足需求。金属有机框架(MOFs)具有明确的晶体结构、可调拓扑结构、超高表面积和优异的可定制性,是一种有机-无机杂化材料。比表面积高、可调控结构、多孔性等优点使得MOFs材料在催化领域呈现出巨大的发展潜力。通过热解金属有机框架制备的多孔碳催化剂是一种非常有前景的催化剂,热解不仅能够活化金属离子,还能提高MOFs材料的稳定性。MOFs的热解方法大致可分为直接热解、先负载再热解、MOFs复合材料热解三类。直接热解是制备多孔碳催化剂最简单的方法,但是其催化效果比贵金属催化剂低。负载热解又分为湿法浸渍后热解和气相沉积后热解,湿法浸渍后热解提高了材料中金属的种类和含量,进而提高了催化效果;气相沉积后热解反应条件苛刻,不能普及。将MOFs与其他材料复合是提高其稳定性的一种有效方法。复合材料热解后具有非常优异的催化效果。MOFs独特的性质越来越受关注。目前,研究者们已经制备了单金属类、双金属类、掺杂杂原子、复合材料类等多孔碳催化剂,探究了其催化性能和循环稳定性。本文系统综述了金属有机框架衍生物的制备方法以及作为多孔碳催化剂的最新进展,最后指出了目前研究中存在的问题并对未来的研究方向进行了展望。  相似文献   

4.
近年来,金属有机框架材料(MOFs)作为一种新型的有机-无机杂化多孔材料,因其具有比表面积大、孔道和化学性质可调等特点而被广泛应用于吸附、催化、气体储存等领域,但是由于MOFs的不稳定性使其在应用方面受到限制。为了克服这方面的限制,可以通过碳化法使其更加稳定。综述了以MOFs为模板,通过直接和间接碳化法来制备稳定多孔碳材料,并对其在吸附、催化等方面的应用进行了叙述。  相似文献   

5.
基于静电纺丝技术的金属有机骨架纳米纤维膜材料(Metal-Organic Frameworks Nanofibrous Membranes, MOFs NFMs)综合了无机多孔材料和聚合物纳米纤维的优势, 是一类具有广阔应用前景的功能性材料。目前已经开发出不同功能的MOFs NFMs, 其应用领域也在不断扩展。本文介绍了MOFs NFMs从制备研究向应用研究的发展历程, 详述了现阶段制备MOFs NFMs的主要方法, 包括混合纺丝法、原位生长法、多步种子生长法和原子层沉积法等; 阐述了目前MOFs NFMs的主要应用领域, 如吸附分离、多相催化、传感检测等; 展望了MOFs NFMs的发展方向和趋势。  相似文献   

6.
金属-有机框架材料(MOFs)是由金属离子或者金属簇合物与有机配体桥连构成的一类新颖的结晶性多孔固体高分子材料,其无/少缺陷的晶态有序结构和多孔特性使其在电子空穴有效分离上具有独特的优势;石墨碳氮化物(g-C_3N_4)由于其独特的固有二维(2D)晶体结构,可见光响应能力(带隙≈2.7eV)和优异的化学性质稳定性,在光催化领域应用很广泛。由于两者独特的光催化性能,对两者复合光催化剂的研究也日益增加,介绍了MOFs/g-C_3N_4复合催化剂的制备方法及在光催化中的应用,分析了光催化反应机理,展望了MOFs/g-C_3N_4复合催化剂在环境污染治理方面的应用前景。  相似文献   

7.
金属有机框架(MOFs)化合物作为一类新型固体多孔材料,在催化、传感及气体分子的吸附和分离等方面的应用报道较多,但在液体中的应用由于水稳定性不好研究较少。综述了不同种类的金属有机聚合物在污水处理中的应用。  相似文献   

8.
金属有机框架(MOFs)材料因其具有高度可控的结构以及可调的孔隙率而在电池材料领域应用广泛。但由于MOFs类材料较低的电导率以及堆叠结构带来的活性位点利用率低等问题使其难以直接用作电极材料。因此,发展MOFs材料电极仍然存在挑战。本文将表面含有Co^(2+)离子的多孔炭纤维在高温高压条件下与含对苯二甲酸根的蒸汽进行反应。通过气-固反应的方法在碳纤维表面原位生长Co-MOF,制备负载纳米级Co-MOF颗粒的碳纳米纤维复合材料,并对该复合材料的结构形貌以及锂电池性能进行分析。多孔碳纤维的引入以及较小尺寸的MOF生成使得复合材料的导电性和稳定性得到了极大的提高。当被用作锂离子电池的负极时,Co-MOF/Pcnf在0.1 A/g的电流密度下循环100次后具有1081 mAh/g的可逆容量;在1 A/g的大电流密度下循环1000次后仍具有623.4 mAh/g的可逆容量。本研究为发展MOFs材料电极提供新的发展思路。  相似文献   

9.
碳纳米管(CNTs)作为纳米材料研究中的一个重要发现,自其诞生以来就成为碳材料领域的研究热点之一.金属有机框架(MOFs)凭借其独特的多孔结构,近年来在各领域的应用已经成为研究前沿之一.随着材料科学的不断发展,对具有不同功能特性材料的复合技术研究,已经成为解决材料应用领域中关键问题的主要方法.而碳纳米管和金属有机框架作为目前材料领域两类十分重要的纳米材料,通过复合技术将碳纳米管的高导电特性和金属有机框架材料的高比表面积、丰富孔道分布特性相结合是研究与应用的必然趋势.本文综述了近年来金属有机框架和碳纳米管的主要复合形式和制备方法,整理了复合材料在超级电容器、锂电池、催化、吸附等领域的最新研究进展,对两种材料性能的协同提升方面进行了讨论和总结,并指出CNTs与MOFs材料的复合以及CNTs的生长分布具有很高的随机性,对其实现进一步控制是未来的技术研究重点.  相似文献   

10.
金属-有机骨架(MOFs)材料是一类由有机配体与金属中心经过自组装而形成的具有可调节孔径的材料。MOFs材料作为新功能材料,近年来成为研究的热点,在制备方法上有了很大的突破。采用微波法制得的MOFs材料与传统无机多孔材料相比,具有超大的比表面积和孔容积、可调的拓扑结构和孔径、良好的热稳定性等优点,因而在化学工业中有着广阔的应用前景,被广泛用于气体储存、催化、吸附等领域。对MOFs材料的微波法制备以及其应用进行了简单的介绍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号