首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
搅拌槽内气液两相混沌混合及分散特性   总被引:1,自引:0,他引:1       下载免费PDF全文
传统Rushton刚性桨常应用于过程工业中搅拌反应器内的气液分散过程,但由于桨叶背后易形成较大的气穴,气液混合效果较差。为了提高搅拌槽内气液两相的混合效果,提出了一种刚柔组合桨强化气液两相的分散过程。利用LabVIEW软件处理刚性桨和刚柔组合桨体系中气液混合过程的压力脉动信号,通过Matlab软件编程计算最大Lyapunov指数(LLE),分析气液混合体系的混沌混合行为,同时,对刚性桨和刚柔组合桨体系中的相对搅拌功耗、整体气含率、局部气含率进行测量。结果表明,在功耗为170 W,通气量为10 m3·h-1条件下,与刚性桨相比,刚柔组合桨能够通过刚-柔-流的耦合作用促进桨叶能量的传递过程,提高搅拌体系的混沌混合程度,刚柔组合桨体系的LLE提高了8.89%。同时,在相同操作条件下,与刚性桨相比,刚柔组合桨能够有效提高相对搅拌功耗以及搅拌槽内的整体气含率和局部气含率,且搅拌槽内气体分散更为均匀。  相似文献   

2.
传统Rushton刚性桨常应用于过程工业中搅拌反应器内的气液分散过程,但由于桨叶背后易形成较大的气穴,气液混合效果较差。为了提高搅拌槽内气液两相的混合效果,提出了一种刚柔组合桨强化气液两相的分散过程。利用Lab VIEW软件处理刚性桨和刚柔组合桨体系中气液混合过程的压力脉动信号,通过Matlab软件编程计算最大Lyapunov指数(LLE),分析气液混合体系的混沌混合行为,同时,对刚性桨和刚柔组合桨体系中的相对搅拌功耗、整体气含率、局部气含率进行测量。结果表明,在功耗为170 W,通气量为10 m3?h-1条件下,与刚性桨相比,刚柔组合桨能够通过刚-柔-流的耦合作用促进桨叶能量的传递过程,提高搅拌体系的混沌混合程度,刚柔组合桨体系的LLE提高了8.89%。同时,在相同操作条件下,与刚性桨相比,刚柔组合桨能够有效提高相对搅拌功耗以及搅拌槽内的整体气含率和局部气含率,且搅拌槽内气体分散更为均匀。  相似文献   

3.
刚柔组合搅拌桨强化搅拌槽中流体混沌混合   总被引:16,自引:13,他引:3       下载免费PDF全文
搅拌槽内普遍存在着两种不同类型的混合区域:混沌混合区和规则区。增大混沌混合区,是提高流体混合效率、降低搅拌过程能耗的重要途径。而合理设计搅拌桨有助于流体形成适宜的流动状态,实现混沌混合。柔性体与刚性体组合,可设计出具有多体运动行为的刚柔组合搅拌桨,可强化流体混沌混合行为。结合Matlab 软件,实验研究了双层桨搅拌槽内自来水体系的最大Lyapunov指数(LLE)和多尺度熵(MSE)的变化规律,对比分析了刚性桨和刚柔组合桨两种桨叶对流体混沌混合的影响。结果表明,刚柔组合桨强化流体的运动特性,使更多流体进入混沌混合状态。在转速为210 r·min-1时,流体的混沌混合达到最佳状态,刚性桨体系的LLE为0.041,而刚柔组合桨体系的LLE为0.048;刚柔组合桨可有效耗散能量,使整个槽体的能量分布均匀,刚柔组合桨在150 r·min-1时的多尺度熵率与刚性桨在210 r·min-1时基本相近;刚柔组合桨体系的混合时间均低于刚性桨体系,在转速为120 r·min-1时,刚柔组合桨使流体的混合时间缩短了26%左右。刚柔组合桨可改变流场结构和能量耗散方式,强化流体混沌混合,实现高效节能操作。  相似文献   

4.
采用双向流固耦合计算方法对搅拌槽内刚性桨(RDT-PBDT)、刚性组合桨(R-RDT-PBDT)、刚柔组合桨(RF-RDT-PBDT)、穿流-刚性组合桨(PR-RDT-PBDT)以及穿流-刚柔组合桨(PRF-RDT-PBDT)体系中的固液两相悬浮特性和桨叶总变形量、等效应力进行了研究。结果表明,在相同功耗下,PRF-RDT-PBDT的最大变形量分别是RDT-PBDT、R-RDT-PBDT、RF-RDT-PBDT、PR-RDT-PBDT的1.984×106倍、1.247×103倍、1.169倍、1.041×103倍。PRF-RDT-PBDT的应力大于RDT-PBDT、R-RDT-PBDT、RF-RDT-PBDT的,比PR-RDT-PBDT的应力分布更均匀。PRF-RDT-PBDT体系的固体颗粒最大Uz/Utip值和最大ε/D2N 3值分别比RDT-PBDT、R-RDT-PBDT、RF-RDT-PBDT和PR-RDT-PBDT体系提高了53.08%和80.84%,38.03%和28.42%,22.14%和20.16%,10.85%和5.725%。PRF-RDT-PBDT能够增大与流体之间的相互耦合作用,增大固体颗粒的轴向速度,提高体系的湍动能耗散率,减小搅拌槽底部固体颗粒的堆积程度,提高固体颗粒的悬浮程度。  相似文献   

5.
传统粉煤灰提铝工艺中酸浸搅拌槽均采用刚性搅拌桨。因刚性桨卷吸能力有限,导致固体颗粒易沉槽、流体混沌混合效率低。提出刚柔组合桨强化酸浸搅拌槽中固液混沌混合行为。实验基于固含率为30%的粉煤灰-自来水体系,研究了刚柔组合酸浸搅拌槽内混沌混合特性及能量耗散规律。采用扭矩传感器采集扭矩时间序列信号,借助Matlab软件编译计算混合过程中最大Lyapunov指数和多尺度熵等混沌特性参数,以单位体积功耗表征搅拌反应器的功率特性。实验考察了搅拌桨安装离底高度、柔性片长度、柔性片宽度等因素对酸浸槽内粉煤灰混沌混合的影响,对比了刚性桨与刚柔组合桨体系的能耗差异。研究结果表明:刚柔组合桨通过柔性片的作用,能增大搅拌桨的卷吸力,进而减少固体颗粒沉槽现象,促进全槽混沌混合;在最优化条件(120 r/min,搅拌桨安装离底高度为T/4,柔性片长度为1.2H1、柔性片宽度为D/8)下,体系最大Lyapunov指数达到最大值0.0645,各尺度下的MSE均比其他条件更大,表明刚柔组合桨能够通过柔性片的多体运动,强化体系混沌混合,均化体系能量分布;刚性桨与刚柔组合桨的单位体积功耗随着转速的增加呈现指数规律增长。  相似文献   

6.
刚柔组合桨强化粉煤灰酸浸搅拌槽内固液混沌混合   总被引:3,自引:4,他引:3       下载免费PDF全文
传统粉煤灰提铝工艺中酸浸搅拌槽均采用刚性搅拌桨。因刚性桨卷吸能力有限,导致固体颗粒易沉槽、流体混沌混合效率低。提出刚柔组合桨强化酸浸搅拌槽中固液混沌混合行为。实验基于固含率为30%的粉煤灰-自来水体系,研究了刚柔组合酸浸搅拌槽内混沌混合特性及能量耗散规律。采用扭矩传感器采集扭矩时间序列信号,借助Matlab软件编译计算混合过程中最大Lyapunov指数和多尺度熵等混沌特性参数,以单位体积功耗表征搅拌反应器的功率特性。实验考察了搅拌桨安装离底高度、柔性片长度、柔性片宽度等因素对酸浸槽内粉煤灰混沌混合的影响,对比了刚性桨与刚柔组合桨体系的能耗差异。研究结果表明:刚柔组合桨通过柔性片的作用,能增大搅拌桨的卷吸力,进而减少固体颗粒沉槽现象,促进全槽混沌混合;在最优化条件(120 r/min,搅拌桨安装离底高度为T/4,柔性片长度为1.2H 1、柔性片宽度为D/8)下,体系最大Lyapunov指数达到最大值0.0645,各尺度下的MSE均比其他条件更大,表明刚柔组合桨能够通过柔性片的多体运动,强化体系混沌混合,均化体系能量分布;刚性桨与刚柔组合桨的单位体积功耗随着转速的增加呈现指数规律增长。  相似文献   

7.
采用双向流固耦合计算方法对搅拌槽内刚性桨(RDT-PBDT)、刚性组合桨(R-RDT-PBDT)、刚柔组合桨(RF-RDT-PBDT)、穿流-刚性组合桨(PR-RDT-PBDT)以及穿流-刚柔组合桨(PRF-RDT-PBDT)体系中的固液两相悬浮特性和桨叶总变形量、等效应力进行了研究。结果表明,在相同功耗下,PRF-RDT-PBDT的最大变形量分别是RDT-PBDT、R-RDT-PBDT、RF-RDT-PBDT、PR-RDT-PBDT的1.984×106倍、1.247×103倍、1.169倍、1.041×103倍。PRF-RDT-PBDT的应力大于RDT-PBDT、R-RDT-PBDT、RF-RDT-PBDT的,比PR-RDT-PBDT的应力分布更均匀。PRF-RDT-PBDT体系的固体颗粒最大Uz/Utip值和最大ε/D2N3值分别比RDT-PBDT、R-RDT-PBDT、RF-RDT-PBDT和PR-RDT-PBDT体系提高了53.08%和80.84%,38.03%和28.42%,22.14%和20.16%,10.85%和5.725%。PRF-RDT-PBDT能够增大与流体之间的相互耦合作用,增大固体颗粒的轴向速度,提高体系的湍动能耗散率,减小搅拌槽底部固体颗粒的堆积程度,提高固体颗粒的悬浮程度。  相似文献   

8.
双层刚柔组合搅拌桨调控流体宏观不稳定性行为   总被引:2,自引:1,他引:1       下载免费PDF全文
流体宏观不稳定性是搅拌槽内流体流动存在大尺度低频非稳态准周期现象,可以影响流体的能量﹑质量的传递行为。为揭示在双层组合桨作用下搅拌槽内流体的非稳态流动规律,实验采用频谱分析和流场可视化技术研究双层组合桨搅拌槽内自来水体系的宏观不稳定性,对比分析了双层刚性桨和双层组合桨对流体混合的影响。结果表明:直径为T的搅拌槽内流体宏观不稳定频率与转速呈线性增大趋势,在转速为180 r·min-1时离底距离 0.25T刚柔组合桨体系的宏观不稳定性频率消失,出现谱带现象,流场呈现多尺度结构特征,而离底距离为0.33T和0.5T的刚柔组合桨体系的宏观不稳定性频率分别为0.5096 Hz和0.3459 Hz。双层组合桨体系分别使流体的混合时间缩短了22.5%和35%左右,减小离底距离,可使流场的规则区减小。双层刚柔组合桨调控流体宏观不稳定性,强化流体的能量传递行为,从而缩短混合时间,提高了流体的混合效率。  相似文献   

9.
基于流固耦合的错位桨搅拌假塑性流体动力学特性   总被引:4,自引:2,他引:2       下载免费PDF全文
栾德玉  张盛峰  郑深晓  魏星  王越 《化工学报》2017,68(6):2328-2335
基于ANSYS Workbench分析平台,采用双向流固耦合计算方法,对错位六弯叶搅拌器)6PBT)和六弯叶搅拌器)6BT)的动力学特征进行了对比分析,根据桨叶与流体之间相互耦合运动特性,探讨了宏观流场的结构和搅拌功耗特性,分析了桨叶的变形和等效应力分布,并对6PBT桨在静态和预应力状态下的模态进行了对比研究。结果表明:同6BT桨相比,6PBT桨叶端部变形量增加了8%,端部应力提高了61%,而根部应力降低了6.7%,应力沿径向呈均匀化分布,这表明错位桨对流体的作用力更大,能够更快地传递能量,同时桨叶强度也得到相应提高;6PBT桨的静模态与预应力模态振型分布一致,在施加预应力后模态频率无明显改变,说明桨叶流场的流固耦合作用和预应力对桨叶模态的影响不大;随转速的增大,6PBT 桨的节能效果显现,体现出错位桨的优势。  相似文献   

10.
基于ANSYS Workbench分析平台,采用双向流固耦合计算方法,对错位六弯叶搅拌器(6PBT)和六弯叶搅拌器(6BT)的动力学特征进行了对比分析,根据桨叶与流体之间相互耦合运动特性,探讨了宏观流场的结构和搅拌功耗特性,分析了桨叶的变形和等效应力分布,并对6PBT桨在静态和预应力状态下的模态进行了对比研究。结果表明:同6BT桨相比,6PBT桨叶端部变形量增加了8%,端部应力提高了61%,而根部应力降低了6.7%,应力沿径向呈均匀化分布,这表明错位桨对流体的作用力更大,能够更快地传递能量,同时桨叶强度也得到相应提高;6PBT桨的静模态与预应力模态振型分布一致,在施加预应力后模态频率无明显改变,说明桨叶流场的流固耦合作用和预应力对桨叶模态的影响不大;随转速的增大,6PBT桨的节能效果显现,体现出错位桨的优势。  相似文献   

11.
柔性Rushton搅拌桨的功耗与流场特性研究   总被引:2,自引:0,他引:2       下载免费PDF全文
基于传统的Rushton桨,开发了一种柔性叶片Rushton搅拌桨。采用数值模拟方法研究了柔性桨的功耗及层流和湍流流场特性,并分别采用扭矩测量法和粒子图像测速法进行了实验验证。结果表明,对于实验规模的搅拌容器,当介质黏度与甘油接近时,可用橡胶作为柔性桨叶制作材料。Reynolds数≤100时,柔性桨的功耗大于刚性桨;Reynolds数大于该值后,柔性桨的功耗小于刚性桨。柔性桨叶对被搅拌流体具有自适应特性,流固耦合作用下产生的变形增加了流体的径向流动能力。搅拌低黏度流体时,柔性桨能提升近桨区流体的速度,增加桨叶远端流体的循环流动能力;搅拌高黏度流体时,近桨区和桨叶远端流体的速度均大于刚性桨。就尾涡而言,柔性桨产生的涡量较小,耗能少。  相似文献   

12.
错位刚柔桨强化搅拌槽内流体混合实验及数值模拟   总被引:1,自引:0,他引:1  
刘作华  王闯  孙伟  陶长元  王运东 《化工学报》2020,71(10):4621-4631
为消除搅拌反应器中混合隔离区,对标准刚性桨(R-RT)、错位刚性桨(PR-RT)和错位刚柔桨(PRF-RT)三种桨叶体系的流体混沌特性参数、流场结构以及流体运动速度进行了探讨。采用Matlab软件编程计算最大Lyapunov指数(LLE)和多尺度熵(MSE),通过计算流体力学研究了三种桨叶体系流场结构和流体运动速度的差异。实验及计算结果表明,错位刚柔桨通过柔性桨叶的随机扰动破坏了隔离区介稳态流场边界,较大程度地消除了混合隔离区。PRF-RT的LLE相比于R-RT和PR-RT分别提高了13.29%和7.25%,MSE也较PR-RT和R-RT大;PRF-RT增强了流场不稳定性,形成了不对称性流场结构,减少了隔离区分布范围;PRF-RT强化桨叶能量耗散,提高了搅拌槽底部、顶部液面以及搅拌槽壁区域流体运动速度,减小了流体混合时间。  相似文献   

13.
To eliminate the isolated mixing regions in the stirred tank, factors associated with chaotic mixing performance were studied, including flow field structure and fluid velocity of rigid RT impeller (R-RT), perturbed rigid RT impeller (PR-RT) and perturbed rigid-flexible RT impeller (PRF-RT). The maximum Lyapunov exponent (LLE) and multi-scale entropy (MSE) were calculated by using Matlab software programming, and the differences in flow field structure and fluid velocity of the three blade systems were studied through computational fluid mechanics. The experimental and computational results showed that perturbed rigid-flexible RT impeller could destroy the boundary of the mesostatic flow field in the isolated mixing regions and the symmetry flow in the process of fluid mixing through the random disturbance of the flexible blade, eliminating the isolated mixing regions. At 90 r/min, the LLE of the perturbed rigid-flexible RT impeller is larger than that of rigid RT impeller and perturbed rigid RT impeller. The LLE of the rigid-flexible RT impeller compared with the rigid RT impeller and perturbed rigid RT impeller increases 13.29% and 7.25% respectively and the MSE of the perturbed rigid-flexible RT impeller is also larger than that of rigid RT impeller and perturbed rigid RT impeller. The perturbed rigid-flexible RT impeller enhances the flow field instability, forms an asymmetric flow field structure, and reduces the distribution range of isolated mixing regions. The perturbed rigid-flexible RT impeller enhances the energy dissipation of the blade, improves the fluid velocity at the bottom and top of the tank and the wall of the tank, and reduces the mixing time.  相似文献   

14.
The presence of a mixing isolation regions in a stirred reactor is a major obstacle to enhancing fluid mixing. Breaking the symmetrical flow field structure in the stirred tank and destroying the mixing isolation area can improve the fluid mixing efficiency. The Matlab software was used to calculate the maximum Lyapunov exponent (LLE) and multi-scale entropy (MSE). The effects of different blade types, flexible blade length, flexible blade number, blade height from bottom and rotation speed on fluid mixing were compared. The results show that the rigid-flexible impeller with long-short blades (RF-LSB) can enhance the flow field structure more unstable and asymmetric with deformation and random vibration of flexible pieces, destroy the symmetry flow in the process of fluid mixing, induce the asymmetric flow field, and make more fluid into the chaotic state. When at 90 r/min and three pieces of flexible, the LLE of the RF-LSB is larger than that of rigid impeller and rigid-flexible impeller RF-LSB with increase of 20.22% and 7.98% respectively. The mixing time (θm) of the three systems [RF-LSB (three pieces), rigid impeller, rigid-flexible impeller] has an exponential relationship with the power consumption per unit volume (Pv). When Pv is constant, θm of the RF-LSB system is the smallest. Results showed that the RF-LSB (three pieces) is superior to rigid impeller and rigid-flexible impeller, which is more conducive to fluid chaotic mixing.  相似文献   

15.
长短叶片复合型刚柔桨强化搅拌槽内流体混沌混合行为   总被引:1,自引:0,他引:1  
搅拌反应器中混合隔离区的存在是强化流体混合的主要障碍。打破搅拌槽中的对称性流场结构,破坏混合隔离区,可以提高流体混合效率。采用Matlab软件编程计算最大Lyapunov指数(LLE)和多尺度熵(MSE),比较了不同桨叶类型、柔性片长度、柔性片数量和桨叶离底高度以及转速对流体混合的影响。结果表明,长短叶片复合型刚柔桨(RF-LSB)桨叶通过刚柔耦合错位连接,柔性片的形变与随机振动对流体的非稳态扰动,使流场结构不稳定性和不对称性增强,强化了流体混合效果。当柔性片数量为3,搅拌转速为90 r/min时,RF-LSB体系比刚性桨和刚柔桨体系的LLE值分别提高了20.22%和7.98%;三种体系[RF-LSB(柔性片数量为3)、刚性桨和刚柔桨体系]的混合时间(θm)与单位体积功耗(Pv)呈指数型关系,当Pv相同时,RF-LSB(柔性片数量为3)的θm最小,表明RF-LSB(柔性片数量为3)更有利于流体混沌混合。  相似文献   

16.
Mixing is crucial in the dispersion of two immiscible fluids. The rational design of an impeller is necessary to form suitable flow conditions and improve fluid mixing efficiency. A double rigid-flexible combination impeller was designed by connecting the upper and lower rigid impeller blades with flexible pieces. Experimental measurements were performed in a laboratory-scale mixer-settler under different impeller types. The largest Lyapunov exponent (LLE) and multi-scale entropy (MSE) were investigated using Matlab. Results showed that the double rigid-flexible combination impeller enhanced liquid–liquid mixing in the mixer-settler through the multiple-body motion behavior triggered by the swings of flexible pieces. At the optimum mixing point of each impeller, the LLEs of the double impeller, double rigid combination impeller, and double rigid-flexible combination impeller were 0.018, 0.055, and 0.057, respectively. At 75 rpm, the MSE of the combination impellers was obviously greater than that of the double impeller, and the rigid-flexible combination impeller had larger MSE than the double rigid combination impeller. The mixing efficiency of the rigid-flexible combination impeller increased with increasing width and quantity of the flexible piece. The quantity of rigid blade slice also influenced the enhancement of mixing ability. The double rigid-flexible combination impeller intensified the chaotic mixing of the two-phase fluid by changing the flow field structure and energy dissipation mode, ultimately achieving an efficient-mixing operation.  相似文献   

17.
刚柔组合搅拌桨与刚性桨调控流场结构的对比   总被引:4,自引:4,他引:0       下载免费PDF全文
高黏度流体处于层流状态时,普遍存在的混合隔离区,降低了流体的混合效率。减小或消除隔离区,是实现流体高效混合的基本途径。采用实验研究与数值模拟相结合的方法,对刚性六直叶涡轮桨(刚性桨)和刚柔组合六直叶涡轮桨(组合桨)的流场结构进行研究,对比分析了两种桨叶在相同功耗(3 kW·m-3)时的轴向、径向和切向的速度矢量图、速度云图以及速度分布散点图。结果表明,刚性桨的能量集中在桨叶尖端部分,远离桨叶区域的流体速度很小甚至为0 m·s-1;而组合桨可将能量从桨叶尖端扩散至全槽,使槽内流体均具有一定的流速,提高了混合效率,且显色实验与数值模拟结果一致,组合桨体系的混合隔离区在短时间内就可消除,混合良好,而刚性桨体系的混合隔离区始终存在,混合效果不佳。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号