首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Various chitinases have been identified in plants and categorized into several groups based on the analysis of their sequences and domains. We have isolated a tobacco gene that encodes a predicted polypeptide consisting of a 20-amino acid N-terminal signal peptide, followed by a 245-amino acid chitinolytic domain. Although the predicted mature protein is basic and shows greater sequence identity to basic class I chitinases (75%) than to acidic class II chitinases (67%), it lacks the N-terminal cysteine-rich domain and the C-terminal vacuolar targeting signal that is diagnostic for class I chitinases. Therefore, this gene appears to encode a novel, basic, class II chitinase, which we have designated NtChia2;B1. Accumulation of Chia2;B1 mRNA was induced in leaves in association with the local-lesion response to tobacco mosaic virus (TMV) infection, and in response to treatment with salicylic acid, but was only slightly induced by treatment with ethephon. Little or no Chia2;B1 mRNA was detected in roots, flowers, and cell-suspension cultures, in which class I chitinase mRNAs accumulate to high concentrations. Sequence comparisons of Chia2;B1 with known tobacco class I and class II chitinase genes suggest that Chia2;B1 might encode an ancestral prototype of the present-day class I and class II isoforms. Possible mechanisms for chitinase gene evolution are discussed.  相似文献   

2.
The complete amino acid sequence of gladiolus bulb chitinase-a (GBC-a) was determined. First the tryptic peptides from GBC-a after it was reduced and S-carboxymethylated were sequenced and then the peptides were further studied by chemical cleavage of the enzyme. GBC-a consisted of 274 amino acid residues and had a molecular mass of 30,714 Da. Two consensus sequences essential for chitinase activity by plant class III chitinases were conserved in GBC-a, although its sequence similarity with plant class III chitinases was less than 20%. Sequence comparison of GBC-a with sequences of other proteins in a protein identification resource (PIR) showed that the GBC-a sequence was 33% similar to that of narbonin, a seed storage 2S globulin from narbon beans.  相似文献   

3.
A differentially displayed cDNA clone (MD17) was isolated from tobacco roots (nicotiana tabacum cv. Xanthi-nc) infected with the arbuscular mycorrhizal (AM) fungus Glomus intraradices. The isolated DNA fragment exhibited a reduced level of expression in response to AM establishment and 90% identity with the 3' noncoding sequence of two basic chitinases (EC 3.2.1.14) from N. tabacum. Northern (RNA) blots and Western blots (immunoblots), probed with tobacco basic chitinase gene-specific probe and polyclonal antibodies raised against the chitinase enzyme, yielded hybridization patterns similar to those of MD17. Moreover, the up-regulation of the 32-kDa basic chitinase gene expression in tobacco roots by (1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH) was less effective in mycorrhizal roots than in nonmycorrhizal controls. Suppression of endogenous basic chitinase (32-kDa) expression was also observed in transgenic mycorrhizal plants that constitutively express the 34-kDa basic chitinase A isoform. When plants were grown with an increased phosphate supply, no suppression of the 32-kDa basic chitinase was obtained. These findings indicate that during the colonization and establishment of G. intraradices in tobacco roots, expression of the basic chitinase gene is down-regulated at the mRNA level.  相似文献   

4.
To carry out a genetic analysis of the degradation and utilization of chitin by Serratia marcescens 2170, various Tn5 insertion mutants with characteristic defects in chitinase production were isolated and partially characterized. Prior to the isolation of the mutants, proteins secreted into culture medium in the presence of chitin were analyzed. Four chitinases, A, B, C1, and C2, among other proteins, were detected in the culture supernatant of S. marcescens 2170. All four chitinases and a 21-kDa protein (CBP21) lacking chitinase activity showed chitin binding activity. Cloning and sequencing analysis of the genes encoding chitinases A and B of strain 2170 revealed extensive similarities to those of other strains of S. marcescens described previously. Tn5 insertion mutagenesis of strain 2170 was carried out, and mutants which formed altered clearing zones of colloidal chitin were selected. The obtained mutants were divided into five classes as follows: mutants with (i) no clearing zones, (ii) fuzzy clearing zones, (iii) large clearing zones, (iv) delayed clearing zones, and (v) small clearing zones. Preliminary characterization suggested that some of these mutants have defects in chitinase excretion, a negatively regulating mechanism of chitinase gene expression, an essential factor for chitinase gene expression, and a structural gene for a particular chitinase. These mutants could allow researchers to identify the genes involved in the degradation and utilization of chitin by S. marcescens 2170.  相似文献   

5.
A cDNA of Trichoderma harzianum (chit42), coding for an endochitinase of 42 kDa, has been cloned using synthetic oligonucleotides corresponding to amino-acid sequences of the purified chitinase. The cDNA codes for a protein of 423 amino acids. Analysis of the N-terminal amino-acid sequence of the chitinase, and comparison with that deduced from the nucleotide sequence, revealed post-translational processing of a putative signal peptide of 22 amino acids and a second peptide of 12 amino acids. The chit42 sequence presents overall similarities with filamentous fungal and bacterial chitinases and to a lesser extent with yeast and plant chitinases. The deduced amino-acid sequence has putative catalytic, phosphorylation and glycosylation domains. Expression of chit42 mRNA is strongly induced by chitin and chitin-containing cell walls and is subjected to catabolite repression. Southern analysis shows that it is present as a single-copy gene in T. harzianum. chit42 is also detected in several tested mycoparasitic and non-mycoparasitic fungal strains.  相似文献   

6.
The analysis of nuclear-encoded chitinase sequences from various angiosperms has allowed the categorization of the chitinases into discrete classes. Nucleotide sequences of their catalytic domains were compared in this study to investigate the evolutionary relationships between chitinase classes. The functionally distinct class III chitinases appear to be more closely related to fungal enzymes involved in morphogenesis than to other plant chitinases. The ordering of other plant chitinases into additional classes mainly relied on the presence of auxiliary domains-namely, a chitin-binding domain and a carboxy-terminal extension-flanking the main catalytic domain. The results of our phylogenetic analyses showed that classes I and IV form discrete and well-supported monophyletic groups derived from a common ancestral sequence that predates the divergence of dicots and monocots. In contrast, other sequences included in classes I* and II, lacking one or both types of auxiliary domains, were nested within class I sequences, indicating that they have a polyphyletic origin. According to phylogenetic analyses and the calculation of evolutionary rates, these chitinases probably arose from different class I lineages by relatively recent deletion events. The occurrence of such evolutionary trends in cultivated plants and their potential involvement in host-pathogen interactions are discussed.  相似文献   

7.
We have identified and characterized the abundant protein from the pulp of banana fruit (Musa acuminata cv. Grand Nain), and have isolated a cDNA clone encoding this protein. Comparison of the amino terminal sequence of the purified 31 kDa protein (P31) suggests that it is related to plant chitinases. Western analyses utilizing rabbit anti-P31 antiserum demonstrate that this protein is pulp-specific in banana. A full-length cDNA clone homologous to class III acidic chitinase genes has been isolated from a pulp cDNA library by differential screening. The identity of this clone as encoding P31 was verified by comparisons between the amino-terminal peptide sequence and the cDNA sequence and cross-hybridization of the translation product of the cDNA clone with P31 antiserum. Northern and western blot analyses of RNA and protein isolated from banana pulp at different stages of ripening indicate that the cDNA and protein are expressed at high levels in the pulp of unripe fruit, and that their abundance decreases as the fruit ripens. Based on its expression pattern and deduced amino acid sequence and composition, we hypothesize that the physiological role of P31 is not for plant protection, but as a storage protein in banana pulp.  相似文献   

8.
9.
Chickpea (Cicer arietinum L.) cell-suspension cultures were used to isolate one beta-1,3-glucanase (EC 3.2.1.29) and two chitinases (EC 3.2.1.14). The beta-1,3-glucanase (M(r) = 36 kDa) and one of the chitinases (M(r) = 32 kDa) belong to class I hydrolases with basic isoelectric points (10.5 and 8.5, respectively) and were located intracellularly. The basic chitinase (BC) was also found in the culture medium. The second chitinase (M(r) = 28 kDa), with an acidic isoelectric point of 5.7, showed homology to N-terminal sequences of class III chitinases and represented the main protein accumulating in the culture medium. Polyclonal antibodies raised against the basic beta-1,3-glucanase (BG) and the acidic chitinase (AC) were shown to be monospecific. The anti-AC antiserum failed to recognize the BC on immune blots, confirming the structural diversity between class I and class III chitinases. Neither chitinase exhibited lysozyme activity. All hydrolases were endo in action on appropriate substrates. The BC inhibited the hyphal growth of several test fungi, whereas the AC failed to show any inhibitory activity. Expression of BG activity appeared to be regulated by auxin in the cell culture and in the intact plant. In contrast, the expression of neither chitinase was apparently influenced by auxin, indicating a differential hormonal regulation of beta-1,3-glucanase and chitinase activities in chickpea. After elicitation of cell cultures or infection of chickpea plants with Ascochyta rabiei, both system were found to have hydrolase patterns which were qualitatively and quantitatively comparable.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Two chitinases (EC 3.2.1.14) and two beta-1,3-glucanases (EC 3.2.1.39) were purified from the culture medium of spruce (Picea abines [L.] Karst.) cells to study their role in modifying elicitors, cell walls, growth, and hyphal morphology of ectomycorrhizal fungi. The 36-kD class I chitinase (isoelectric point [pl] 8.0) and the 28-kD chitinase (pl 8.7) decreased the activity of elicitor preparations from Hebeloma crustuliniforme (Bull. ex Fries.) Quél., Amanita muscaria (L.) Pers., and Suillus variegatus (Sw.: Fr.) O.K., as demonstrated by using the elicitor-induced extracellular alkalinization in spruce cells as a test system. In addition, chitinases released monomeric products from the walls of these ectomycorrhizal fungi. The beta-1,3-glucanases (35 kD, pl 3.7 and 3.9), in contrast, had little influence on the activity of the fungal elicitors and released only from walls of A. muscaria some polymeric products. Furthermore, chitinases alone and in combination with beta-1,3-glucanases had no effect on the growth and morphology of the hyphae. Thus, it is suggested that apoplastic chitinases in the root cortex destroy elicitors from the ectomycorrhizal fungi without damaging the fungus. By this mechanism the host plant could attenuate the elicitor signal and adjust its own defense reactions to a level allowing symbiotic interaction.  相似文献   

11.
The complete amino acid sequence of pokeweed leaf chitinase-A was determined. First all 11 tryptic peptides from the reduced and S-carboxymethylated form of the enzyme were sequenced. Then the same form of the enzyme was cleaved with cyanogen bromide, giving three fragments. The fragments were digested with chymotrypsin or Staphylococcus aureus V8 protease. Last, the 11 tryptic peptides were put in order. Of seven cysteine residues, six were linked by disulfide bonds (between Cys25 and Cys74, Cys89 and Cys98, and Cys195 and Cys208); Cys176 was free. The enzyme consisted of 208 amino acid residues and had a molecular weight of 22,391. It consisted of only one polypeptide chain without a chitin-binding domain. The length of the chain was almost the same as that of the catalytic domains of class IL chitinases. These findings suggested that this enzyme is a new kind of class IIL chitinase, although its sequence resembles that of catalytic domains of class IL chitinases more than that of the class IIL chitinases reported so far. Discussion on the involvement of specific tryptophan residue in the active site of PLC-A is also given based on the sequence similarity with rye seed chitinase-c.  相似文献   

12.
Sequence data for genes encoding 16S rRNA indicated that the marine strain previously named Pseudomonas sp. strain S9 would be better identified as a Pseudoalteromonas sp. By use of transposon mutagenesis, a chitinase-negative mutant of S9 with a lacZ reporter gene insertion was isolated. Part of the interrupted gene was cloned and sequenced. The deduced amino acid sequence had homology to sequences of bacterial chitinases. Expression of the chitinase gene promoter was quantified by measuring the lacZ reporter gene product, beta-galactosidase, beta-Galactosidase production was induced 10-fold by N-acetylglucosamine and 3-fold by chitin in minimal medium. Repression of beta-galactosidase synthesis was observed in rich medium either with or without chitin but was not observed in minimal medium containing glucose. The chitinase gene promoter was induced by starvation and higher-than-ambient levels of carbon dioxide but not by cadmium ion, heat or cold shock, or UV exposure.  相似文献   

13.
Insect chitinases: molecular biology and potential use as biopesticides   总被引:2,自引:0,他引:2  
Chitin, an insoluble structural polysaccharide that occurs in the exoskeletal and gut linings of insects, is a metabolic target of selective pest control agents. One potential biopesticide is the insect molting enzyme, chitinase, which degrades chitin to low molecular weight, soluble and insoluble oligosaccharides. For several years, our laboratories have been characterizing this enzyme and its gene. Most recently, we have been developing chitinase for use as a biopesticide to control insect and also fungal pests. Chitinases have been isolated from the tobacco hornworm, Manduca sexta, and several other insect species, and some of their chemical, physical, and kinetic properties have been determined. Also, cDNA and genomic clones for the chitinase from the hornworm have been isolated and characterized. Transgenic plants that express hornworm chitinase constitutively have been generated and found to exhibit host plant resistance. A transformed entomopathogenic virus that produces the enzyme displayed enhanced insecticidal activity. Chitinase also potentiated the efficacy of the toxin from the microbial insecticide, Bacillus thuringiensis. Insect chitinase and its gene are now available for biopesticidal applications in integrated pest management programs. Current knowledge regarding the molecular biology and biopesticidal action of insect and several other types of chitinases is described in this mini-review.  相似文献   

14.
Cytoplasmic aggregation is an early resistance-associated event that is observed in potato tissues either after penetration of an incompatible race of Phytophthora infestans, the potato late blight fungus, or after treatment with hyphal wall components (HWC) prepared from P. infestans. In potato cells in suspension culture, the number of cells with cytoplasmic aggregation increased upon treatment with HWC, but such an increase was suppressed by treatment with cytochalasin D prior to treatment with HWC. This result suggested that cytoplasmic aggregation in cultured potato cells might be connected with the association of actin filaments. To identify the molecular basis of cytoplasmic aggregation, we purified actin and actin-related proteins by affinity chromatography on a column of immobilized DNase I from cultured potato cells and isolated proteins of 43 kDa, 32 kDa and 22 kDa. Analysis of the amino-terminal amino acid sequences indicated that the 43 kDa, 32 kDa and 22 kDa proteins were potato actin, basic chitinase and osmotin-like protein, respectively. This conclusion was supported by the results of Western blotting analysis of the 43 kDa and 32 kDa proteins with antibodies against actin and basic chitinase. Binding analysis with actin coupled to actin-specific antibodies and biotinylated actin suggested that the 32 kDa and 22 kDa proteins had actin-binding activity. In addition, examination of biomolecular interactions using an optical biosensor confirmed the binding of chitinase to actin. These results imply the possibility that basic chitinase and osmotin-like protein might be involved in cytoplasmic aggregation, hereby participating. In the potato cell's defense against attack by pathogen.  相似文献   

15.
A thermophilic and actinic bacterium strain, MH-1, which produced three different endochitinases in its culture fluid was isolated from chitin-containing compost. The microorganism did not grow in any of the usual media for actinomyces but only in colloidal chitin supplemented with yeast extract and (2, 6-O-dimethyl)-beta-cyclodextrin. Compost extract enhanced its growth. In spite of the formation of branched mycelia, other properties of the strain, such as the formation of endospores, the presence of meso-diaminopimelic acid in the cell wall, the percent G+C of DNA (55%), and the partial 16S ribosomal DNA sequence, indicated that strain MH-1 should belong to the genus Bacillus. Three isoforms of endochitinase (L, M, and S) were purified to homogeneity and characterized from Bacillus sp. strain MH-1. They had different molecular masses (71, 62, and 53 kDa), pIs (5.3, 4.8, and 4.7), and N-terminal amino acid sequences. Chitinases L, M, and S showed relatively high temperature optima (75, 65, and 75 degreesC) and stabilities and showed pH optima in an acidic range (pH 6.5, 5.5, and 5.5, respectively). When reacted with acetylchitohexaose [(GlcNAc)6], chitinases L and S produced (GlcNAc)2 at the highest rate while chitinase M produced (GlcNAc)3 at the highest rate. None of the three chitinases hydrolyzed (GlcNAc)2. Chitinase L produced (GlcNAc)2 and (GlcNAc)3 in most abundance from 66 and 11% partially acetylated chitosan. The p-nitrophenol (pNP)-releasing activity of chitinase L was highest toward pNP-(GlcNAc)2, and those of chitinases M and S were highest toward pNP-(GlcNAc)3. All three enzymes were inert to pNP-GlcNAc. AgCl, HgCl2, and (GlcNAc)2 inhibited the activities of all three enzymes, while MnCl2 and CaCl2 slightly activated all of the enzymes.  相似文献   

16.
In various mammals, enzymatically active and inactive members of family 18 glycosyl hydrolases, containing chitinases, have been identified. In man, chitotriosidase is the functional chitinolytic enzyme, whilst the homologous human cartilage 39-kDa glycoprotein (HC gp-39) does not exhibit chitinase activity and its function is unknown. This study establishes that HC gp-39 is a chitin-specific lectin. It is experimentally demonstrated that a single amino acid substitution in the catalytic centre of the 39-kDa isoform of chitotriosidase, which generates a similar sequence to that in HC gp-39, results in a loss of hydrolytic activity and creates the capacity to bind to chitin. The possible implication of the finding for chitinolytic and chitin-binding proteins that are produced in high quantities by activated macrophages are discussed.  相似文献   

17.
18.
Avocado, the fruit of the tropical tree Persea americana, is a source of allergens that can elicit diverse IgE-mediated reactions including anaphylaxis in sensitized individuals. We characterized a 32-kDa major avocado allergen, Prs a 1, which is recognized by 15 out of 20 avocado- and/or latex-allergic patients. Natural Prs a 1 was purified, and its N-terminal and two tryptic peptide sequences were determined. We isolated the Prs a 1 encoding cDNA by PCR using degenerate primers and 5'-rapid amplification of cDNA ends. The Prs a 1 cDNA coded for an endochitinase of 326 amino acids with a leader peptide of 25 amino acids. We expressed Prs a 1 in the yeast Pichia pastoris at 50 mg/liter of culture medium. The recombinant Prs a 1 showed endochitinase activity, inhibited growth and branching of Fusarium oxysporum hyphae, and possessed IgE binding capacity. IgE cross-reactivity with latex proteins including a 20-kDa allergen, most likely prohevein, was demonstrated, providing an explanation for the commonly observed cross-sensitization between avocado and latex proteins. Sequence comparison showed that Prs a 1 and prohevein had 70% similarity in their chitin-binding domains. Characterization of chitinases as allergens has implications for engineering transgenic crops with increased levels of chitinases.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号