首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
To establish the relative importance of terrigenous and marine organic matter in the southern Beaufort Sea, we measured the concentrations and the stable isotopic compositions of organic carbon and total nitrogen in sediments and in settling particles intercepted by sediment traps. The organic carbon content of surface sediment in the Chukchi and southern Beaufort Seas ranged from 0.6 to 1.6% dry wt., without a clear geographical pattern. The CORG:NTOT ratio ranged from 7.0 to 10.4 and did not vary significantly downcore at any one station. Values of δ13CORG and δ15NTOT in the sediment samples were strongly correlated, with the highest values, indicative of a more marine contribution, in the Amundsen Gulf. In contrast, the organic matter content, elemental (CORG:NTOT ratio) and isotopic (δ13CORG and δ15NTOT) composition of the settling particles was different from and much more variable than in the bottom sediments. The isotopic signature of organic matter in the Beaufort Sea is well constrained by three distinct end-members: a labile marine component produced in situ by planktonic organisms, a refractory marine component, the end product of respiration and diagenesis, and a refractory terrigenous component. A three-component mixing model explains the scatter observed in the stable isotope signatures of the sediment trap samples and accommodates an apparent two-component mixing model of the organic matter in sediments. The suspended matter in the water column contains organic matter varying from essentially labile and marine to mostly refractory and terrigenous. As it settles through the water column, the labile marine organic matter is degraded, and its original stable isotope signature changes towards the signature of the marine refractory component. This process continues in the bottom sediment with the result that the sedimentary organic matter becomes dominated by the refractory terrigenous and marine components.  相似文献   

3.
The photoreactivity of chromophoric dissolved organic matter (CDOM) transported to Arctic shelf environments by rivers has only recently been studied and its quantitative role in Arctic shelf biogeochemistry has received little attention. Sunlight exposure experiments were performed on CDOM collected over a three year period (2002 to 2004) from river, estuary, shelf, and gulf regions of the Western Canadian Arctic. Decreases in CDOM absorption, synchronous fluorescence (SF), and dissolved organic carbon (DOC) concentration were followed after 3 days of exposure, and in two experiments, six optical cutoff filters were used to incrementally remove ultraviolet radiation incident on the samples. Apparent quantum yields for CDOM photobleaching (AQYble) and for DOC photomineralization (AQYmin) were computed, as were two AQY spectra (ble and min) for the Mackenzie River and a sample from the Mackenzie Shelf. The photoreactivity of Mackenzie River CDOM was highest after break-up and peak discharge and lowest in late summer. The half-lives of CDOM and DOC were estimated at 3.7 days and 4.8 days, respectively, when Mackenzie River water was exposed to full sunlight. Photobleaching of Mackenzie River CDOM fluorescence after most UV-B wavelengths were removed increased the correlation between the river and offshore waters in the Beaufort Sea. When light attenuation from particle- and CDOM-rich river water was considered for the Mackenzie Shelf, our photodegradation models estimated around 10% loss of absorption and < 1% DOC loss, suggesting that sunlight exposure does not substantially degrade CDOM on Arctic shelves.  相似文献   

4.
To examine the source and preservation of organic matter in the shelf sediments of the East China Sea (ECS), we measured bulk C/N and isotopes, organic biomarkers (n-alkanes and fatty acids) and compound-specific (fatty acids) stable carbon isotope ratios in three sediment cores collected from two sites near the Changjiang Estuary and one in the ECS shelf. Contrasting chemical and isotopic compositions of organic matter were observed between the estuarine and shelf sediments. The concentrations of total n-alkanes and fatty acids in the shelf surface sediments (0–2 cm) were 5–10 times higher than those in estuarine surface sediments but they all decreased rapidly to comparable levels below the surface layer. The compositions of n-alkanes in the estuarine sediments were dominated by C26-C33 long-chain n-alkanes with a strong odd-to-even carbon number predominance. In contrast, the composition of n-alkanes in the shelf sediment was dominated by nC15 to nC22 compounds. Long-chain (>C20) fatty acids (terrestrial biomarkers) accounted for a significantly higher fraction in the estuarine sediments compared to that in the shelf sediment, while short-chain (<C20) saturated and unsaturated fatty acids were more abundant in the shelf surface sediments than in the estuarine sediments. Stable carbon isotopic ratios of individual fatty acids showed a general positive shift from estuarine to shelf sediments, consistent with the variations in bulk δ 13CTOCTOC. These contrasts between the estuarine and shelf sediments indicate that terrestrial organic matter was mainly deposited within the Changjiang Estuary and inner shelf of ECS. Post-depositional diagenetic processes in the surface sediments rapidly altered the chemical compositions and control the preservation of organic matter in the region.  相似文献   

5.
The East Asian marginal seas are important sinks of terrigenous materials transported by large rivers. In this study two cores from the Changjiang (Yangtze River) and Zhujiang (Pearl River) estuaries and one core from the inner shelf off of Hong Kong were investigated to examine the burial of organic matter during the postglacial period and its possible links with paleoenvironmental changes. Based on a simple two end-member mixing model, the terrestrial organic matter supplied primarily from the Zhujiang and Changjiang dominates the estuarine areas while marine organic matter contributes more to the inner-mid shelf. The competing contributions of terrestrial and marine organic matter are responsible for the downcore variations of organic elemental compositions. The overall decreasing shifts of total organic carbon concentrations and total organic carbon to total nitrogen ratios in the Zhujiang estuarine sediments since 6.5 kaBP seems to support the notion that depth profiles of organic matter compositions deposited in the Zhujiang Estuary can aid in the reconstruction of monsoon history in the Holocene. Nevertheless, organic matter compositions in the Changjiang Estuary and inner shelf off of southeastern Hong Kong respond in a different and more complex way to freshwater discharges or precipitation changes (monsoon variability) in the catchments, owing to complex controls of deposition and preservation of organic matter in these estuarine and shelf environments. Caution is therefore needed in using organic elemental and isotopic compositions to decipher paleoenvironmental changes in East Asian continental shelves where intense river–sea interactions occur and sedimentary environments change drastically.  相似文献   

6.
Stable isotope ratios (δ13C) of total organic carbon were measured in surface sediments from the continental margins of the northern and western Gulf of Mexico, the north coast of Alaska and the Niger Delta. Gulf of Mexico outer-shelf isotope ratios were in the same range as has been reported for Atlantic coastal shelf sediments, ?21.5 to ?20‰. Off large rivers including the Mississippi, Niger and Atchafalaya (Louisiana), δ13C values increased from terrigenous-influenced (around ?24‰) to typically marine (~?20‰) within a few tens of kilometers from shore. This change was accompanied by a decrease in the amount of woody terrigenous plant remains in the sediment. Alaskan continental margin samples from the cold Beaufort Sea had isotopically more negative carbon (?25.5 to ?22.6‰) than did warmer-water sediments. The data indicate that the bulk of organic carbon in Recent sediments from nearshore to outer continental shelves is marine derived.  相似文献   

7.
In this study, organic carbon (OC), total nitrogen (TN), stable carbon isotopic (δ13COC) and CuO reaction product compositions were used to identify the sources of organic matter (OM) and to quantify the relative importance of allochthonous and autochthonous contributions to the western Adriatic Sea, Italy. Suspended particulate material (195 samples) and surficial sediments (0–1 cm, 70 samples) from shallow cross-shelf transects were collected in February and May 2003, respectively. Vertical water column profiles were acquired along the same transects. Data include depth, potential temperature, salinity, density and chlorophyll fluorimetry.Along the western Adriatic shelf in the near-shore region, the phytoplankton growth was influenced by dynamics of the buoyant plumes from the Po and Appennine rivers. A small amount of very fine terrigenous material remained suspended within the coastal current and was exported southward along the shelf to the slope. High variability in the bulk composition was detected in the Po prodelta surficial sediments, whereas the western Adriatic shelf, although a larger area, exhibited a narrower range of values.A significant decoupling was observed between suspended particles in the water column and surficial deposits. The organic material collected in the water column was compositionally heterogeneous, with contributions from marine phytoplankton, riverine–estuarine phytoplankton and soil-derived OM. Frequent physical reworking of surficial sediments likely leads to the efficient oxidation of marine OC, resulting in the observed accumulation and preservation of refractory soil-derived OC delivered by the Po and Appennine rivers.  相似文献   

8.
Origin of sedimentary organic matter in the north-western Adriatic Sea   总被引:1,自引:0,他引:1  
In order to evaluate the origin and the transformation of organic matter on the shallow shelf of the NW Adriatic Sea, organic carbon, total nitrogen and stable isotope ratios of organic carbon were analysed in riverine suspended matter and sediments as well as in marine suspended and sedimentary organic matter, in marine phytoplankton and zooplankton.The deposition of organic matter is influenced by fine sediment concentration. Surface sediments were characterised by highly variable biogeochemical conditions on the sea floor, whereas sub-surface sediments showed a more homogeneous hypoxic/anoxic environment.Low Corg/N ratio and high organic carbon and nitrogen concentrations in riverine suspended organic matter indicate an important contribution of freshwater phytoplankton within rivers, particularly during low flow regimes, which adds to the marine phyto- and zooplankton at shelf locations.In order to evaluate the importance of terrestrial, riverine and marine sources of OM in shelf sediments, a three end-member mixing model was applied to shelf surface sediments using 13C/12C values for organic matter and N/C ratios. The model showed an elevated contribution of terrestrial organic substances at intermediate depths (10–15 m), mostly corresponding to an area of coarser grain-size, whereas the riverine and marine organic fractions were mainly accumulating near the coast and offshore, respectively.  相似文献   

9.
The sources and distribution of organic matter (OM) in surface waters and sediments from Winyah Bay (South Carolina, USA) were investigated using a variety of analytical techniques, including elemental, stable isotope and organic biomarker analyses. Several locations along the estuary salinity gradient were sampled during four different periods of contrasting river discharge and tidal range. The dissolved organic carbon (DOC) concentrations of surface waters ranged from 7 mg l−1 in the lower bay stations closest to the ocean to 20 mg l−1 in the river and upper bay samples. There was a general linear relationship between DOC concentrations and salinity in three of the four sampling periods. In contrast, particulate organic carbon (POC) concentrations were significantly lower (0.1–3 mg l−1) and showed no relationship with salinity. The high molecular weight dissolved OM (HMW DOM) isolated from selected water samples collected along the bay displayed atomic carbon:nitrogen ratios ([C/N]a) and stable carbon isotopic compositions of organic carbon (δ13COC) that ranged from 10 to 30 and from −28 to −25‰, respectively. Combined, such compositions indicate that in most HMW DOM samples, the majority of the OM originates from terrigenous sources, with smaller contributions from riverine and estuarine phytoplankton. In contrast, the [C/N]a ratios of particulate OM (POM) samples varied significantly among the collection periods, ranging from low values of 5 to high values of >20. Overall, the trends in [C/N]a ratios indicated that algal sources of POM were most important during the early and late summer, whereas terrigenous sources dominated in the winter and early spring.In Winyah Bay bottom sediments, the concentrations of the mineral-associated OM were positively correlated with sediment surface area. The [C/N]a ratios and δ13COC compositions of the bulk sedimentary OM ranged from 5 to 45 and from −28 to −23‰, respectively. These compositions were consistent with predominant contributions of terrigenous sources and lesser (but significant) inputs of freshwater, estuarine and marine phytoplankton. The highest terrigenous contents were found in sediments from the river and upper bay sites, with smaller contributions to the lower parts of the estuary. The yields of lignin-derived CuO oxidation products from Winyah Bay sediments indicated that the terrigenous OM in these samples was composed of variable mixtures of relatively fresh vascular plant detritus and moderately altered soil OM. Based on the lignin phenol compositions, most of this material appeared to be derived from angiosperm and gymnosperm vascular plant sources similar to those found in the upland coastal forests in this region. A few samples displayed lignin compositions that suggested a more significant contribution from marsh C3 grasses. However, there was no evidence of inputs of Spartina alterniflora (a C4 grass) remains from the salt marshes that surround the lower sections of Winyah Bay.  相似文献   

10.
Surface sediments (10 cm) of the subtropical Pearl River estuary and adjacent shelf, Southern China were collected. Fatty acids and compound-specific carbon isotopic analyses were determined to infer their sources and biogeochemical cycle of this lipid in the subtropical Pearl River estuary and adjacent northern South China Sea (SCS). The total concentrations of fatty acids ranged from ∼1.28 to ∼42.25 μg g−1 dry weight. The levels of polyunsaturated fatty acids (PUFA) were low (0.2–4.8% of total fatty acids), suggesting that fatty acids derived from algae were effectively recycled during the whole settling and depositing process. Bacterial fatty acids were significantly high and terrigenous fatty acids were low in the sediments. Principal component analysis (PCA) of the data also indicates that a clear separation of the biogeochemical sources can be seen. The δ13C values of bacterial fatty acids, i.e., i/aiC15 (−22.9‰ to −29.4‰) suggest that bacteria within the sediments mainly utilize a labile pool of organic matter derived from algae for their growth in the subtropical Pearl River estuary system.  相似文献   

11.
The nearshore shelf of the Beaufort Sea is defined by extreme physical and biological gradients that have a distinctive influence on its productivity and trophic structure. Massive freshwater discharge from the Mackenzie River, along with numerous smaller rivers and streams elsewhere along the coast, produce an environment that is decidedly estuarine in character, especially in late spring and summer. Consequently, the Beaufort coast provides a critical habitat for several species of amphidromous fishes, some of which are essential to the subsistence lifestyle of arctic native populations. Because of its low in situ productivity, allochthonous inputs of organic carbon, identifiable on the basis of isotopic composition, are important to the functioning of this arctic estuarine system. Coastal erosion and river discharge are largely responsible for introducing high concentrations of suspended sediment from upland regions into the nearshore zone. The depletion in the 13C content of invertebrate and vertebrate consumers, which drops about 4–5‰ eastward along the eastern Alaskan Beaufort Sea coast, may reflect the assimilation of this terrestrial organic matter into local food webs. In addition, the large range in 13C values of fauna collected in the eastern Beaufort (nearly 8‰) compared to the same species in the northeastern Chukchi (3‰), indicate a lower efficiency of carbon transfer between trophic levels in the eastern Beaufort. The wider spread in stable isotope values in the eastern Beaufort may also reflect a decoupling between benthic and pelagic components. Isotopic tracer studies of amphidromous fishes in the Simpson Island barrier island lagoon revealed that terrestrial (peat) carbon may contribute as much as 30–50% of their total dietary requirements. On the eastern Alaska Beaufort Sea coast, the δ13C values of arctic cod collected in semi-enclosed lagoons were more depleted, by 3–4‰, compared to fish collected in the coastal Beaufort Sea. Calculations from isotopic mixing equations indicate cod from lagoons may derive 70% of their carbon from terrestrial sources. The δ15N values of lagoon fish were also 4‰ lower than coastal specimens, reflective of the lower δ15N values of terrestrially derived nitrogen (0–1.5‰ compared to 5–7‰ for phytoplankton). The role of terrestrial carbon in arctic estuarine food webs is especially important in view of the current warming trend in the arctic environment and the role of advective processes that transport carbon along the nearshore shelf. Biogeochemical studies of the arctic coastal estuarine environment may provide more insights into the function of these biologically complex ecosystems.  相似文献   

12.
Stable oxygen isotopic composition of sea water and stable carbon isotopes of dissolved inorganic carbon (DIC) on the continental shelf in the southern Weddell Sea are presented. Using the stations sampled during the summer 1995 two sections can be constructed, one closely parallel to the ice shelf edge and the other perpendicular to the upper continental slope. Generally, δ18O values clearly separate between different shelf water masses depending on the content of meteoric meltwater added during melting of glacial ice. Extrapolation of the mixing line between the cores of High Salinity Shelf Water (HSSW) and supercooled Ice Shelf Water (ISW) reveals δ18O values of the glacial ice of −27‰, whereas extrapolation of the mixing line between the δ18O values of the most-saline HSSW and lowest temperature ISW results in δ18O values of −34‰ for glacial ice. These values point to an origin of meltwater from below the ice shelf, where ice is less depleted in 18O, since deep beneath the ice shelf close to the grounding line, values may reach −40‰. If values between −34 and −27‰ are used as δ18O end member values for glacial ice, the amount of meltwater from the ice shelf that adds to the formation of ISW off the Filchner–Ronne Ice Shelf ranges from 0.2 to 0.8%, in agreement with previous studies based on δ18O and 4He. Carbon isotopic fractionation due to gas exchange between the atmosphere and the ocean at cold temperatures results in Δδ13CDIC values of 0.20±0.17‰ for Weddell Sea Deep Water, the water mass that ventilates the global abyssal ocean, typically defined as Antarctic Bottom Water (AABW). This confirms the low end of the range estimated previously (0.2–0.4‰), and thus corroborates the dominance of biology in shaping the deep and bottom water δ13C signal. It has been hypothesized that different modes of glacial/interglacial Antarctic bottom water formation may be separated by different stable isotopic compositions of deep-sea foraminiferal calcite. Here I show that differences between Δδ13C and δ18O values of HSSW and ISW, both of which contribute to bottom water formation today, are too small to be resolved in deep and bottom water masses. Therefore, glacial/interglacial changes in relative proportions of these water masses in Antarctic deep and bottom water cannot be separated by stable isotopes of fossil benthic foraminiferal calcite.  相似文献   

13.
《Marine Chemistry》2001,73(2):97-112
Linked to gas seeps on the Ukrainian shelf (northwestern Black Sea), massive authigenic carbonates form as a result of anaerobic methane oxidation. Lipid distributions in these ‘cold seep’ carbonates and an associated microbial mat were investigated for process markers reflecting the presence and metabolic activity of distinctive methane-related biota. The samples contain free, irregular isoprenoid hydrocarbons, namely the tail-to-tail linked acyclic C20-isoprenoid 2,6,11,15-tetramethylhexadecane (crocetane), its C25-homologue 2,6,10,15,19-pentamethylicosane (PMI), and several unsaturated derivatives thereof. Furthermore, specific acyclic and cyclic C40-isoprenoids were released upon ether cleavage of the polar fraction from the carbonate. The abundance of these compounds indicates a pronounced role of particular Archaea in the biogeochemical cycling of carbon at methane seeps. Stable carbon isotopic analyses of these lipids reveal extraordinary depletions in 13C corresponding to δ-values in the range of −100±30‰ PDB, whereas other compounds show isotopic compositions normally observed for marine lipids (around −30‰ PDB). The isotope data imply that the biosynthesis of the archaeal isoprenoids occurred in situ and involved the utilization of isotopically depleted, i.e. methane-derived, carbon. Apart from archaeal markers, the carbonate and the mat contain authigenic, framboidal pyrite and isotopically depleted fatty acids, namely iso-, and anteiso-branched compounds most likely derived from sulphate-reducing bacteria (SRB). The indications for a tight association of these normally competitive organisms support a model invoking a syntrophic relationship of SRB with Archaea responsible for the anaerobic oxidation of methane. The biomarker patterns obtained from the Black Sea samples were further compared to those from a Oligocene seep carbonate (Lincoln Creek Formation, WA, USA) in order to evaluate their biomarker potential for ancient settings. The prominent occurrence of isotopically light crocetane (−112‰) and PMI (−120‰) meets the findings for the contemporary materials. Thus, isotopically depleted isoprenoids provide diagenetically stable fingerprints for the reconstruction of carbon cycling in both, modern and ancient methane seep systems.  相似文献   

14.
The isotopic composition (δ13C and δ15N) and organic carbon (OC) and total nitrogen (TN, organic plus inorganic) content of 37 carbonate-free surficial sediments of the subtropical Pearl River estuary and the adjacent shelf of South China Sea (SCS) was determined. The δ13C values indicate that the sediment organic material is a mixture from two sources, terrestrial and marine. Several of the sediments have extremely low (< 4) OC / TN ratios, which could be due to low OC contents and/or to a significant fraction of the TN present as inorganic nitrogen adsorbed on clays. In general, the spatial patterns of OC, TN, δ13C and δ15N are similar. Values are low at the river mouth and on the western coast, suggesting proportionally greater accumulation of terrestrial particulate organic matter relative to marine phytodetritus, which is limited by low productivity in the turbid plume of the Pearl River. Algal-derived organic carbon (al-OC) content is estimated to be low (≤ 0.06%) at the river mouth and higher (up to 0.57%) on the adjacent inner shelf based on a mixing model of end members.  相似文献   

15.
Continental shelves play a major role as transition zone during transport of multiply-sourced organic matter into the deep sea. In order to obtain a comprehensive understanding of the origin and fractionation processes of organic matter at the NW Iberian margin, 40 surface sediment samples were analyzed for a structurally diverse range of lipid biomarkers, lignin phenols, grain size distribution, organic carbon content (TOC), its stable carbon isotopic composition (δ13CTOC), and the organic carbon to nitrogen ratio (TOC/TN). The biomarker inventory reflected a heterogeneous mixture of organic matter from various marine and terrestrial sources. Soil- and vascular plant-derived continental organic matter, indicated by lignin phenols and plant-derived triterpenoids, was primarily associated with the silt fraction and transported by river run-off. The spatial distribution patterns of higher plant-derived waxes, long-chain n-alkanes, n-alcohols, and n-fatty acids suggested distinct different transport mechanisms and/or sources. The branched tetraether index, a molecular proxy expressing the relative abundance of branched dialkyl tetraethers vs. crenarchaeol and considered to signal soil-derived organic matter, was not as sensitive as the other molecular indicators in detecting continental organic matter. Hydrodynamic sorting processes on the shelf resulted in a separation of different types of terrestrial organic matter; grass and leaf fragments and soil organic matter were preferentially transported offshore and deposited in areas of lower hydrodynamic energy. Algal lipid biomarker distributions indicated a complex community of marine plankton contributing to organic matter. Spatial and seasonal patterns of phytoplankton growth primarily controlled the distribution of algal organic matter components. The interplay of all of these processes controls production, distribution, and deposition of organic matter and results in three distinct provinces at the Galicia–Minho shelf: (I) fresh marine organic matter dominated the inner shelf region; (II) high inputs of terrestrial organic matter and high TOC content characterized the mid-shelf deposited mudbelt; (III) lower concentrations of relatively degraded organic matter with increased proportions of refractory terrestrial components dominated the outer shelf and continental slope.  相似文献   

16.
Three sediment cores were collected off the Mississippi River delta on the Louisiana Shelf at sites that are variably influenced by recurring, summer-time water-column hypoxia and fluvial loadings. The cores, with established chronology, were analyzed for their respective carbon, nitrogen, and sulfur elemental and isotopic composition to examine variable organic matter inputs, and to assess the sediment record for possible evidence of hypoxic events. Sediment from site MRJ03-3, which is located close to the Mississippi Canyon and generally not influenced by summer-time hypoxia, is typical of marine sediment in that it contains mostly marine algae and fine-grained material from the erosion of terrestrial C4 plants. Sediment from site MRJ03-2, located closer to the mouth of the Mississippi River and at the periphery of the hypoxic zone (annual recurrence of summer-time hypoxia >50%), is similar in composition to core MRJ03-3, but exhibits more isotopic and elemental variability down-core, suggesting that this site is more directly influenced by river discharge. Site MRJ03-5 is located in an area of recurring hypoxia (annual recurrence >75%), and is isotopically and elementally distinct from the other two cores. The carbon and nitrogen isotopic composition of this core prior to 1960 is similar to average particulate organic matter from the lower Mississippi River, and approaches the composition of C3 plants. This site likely receives a greater input of local terrestrial organic matter to the sediment. After 1960 and to the present, a gradual shift to higher values of δ13C and δ15N and lower C:N ratios suggests that algal input to these shelf sediments increased as a result of increased productivity and hypoxia. The values of C:S and δ34S reflect site-specific processes that may be influenced by the higher likelihood of recurring seasonal hypoxia. In particular, the temporal variations in the C:S and δ34S down-core are likely caused by changes in the rate of sulfate reduction, and hence the degree of hypoxia in the overlying water column. Based principally on the down-core C:N and C:S ratios and δ13C and δ34S profiles, sites MRJ03-3 and MRJ03-2 generally reflect more marine organic matter inputs, while site MRJ03-5 appears to be more influenced by terrestrial deposition.  相似文献   

17.
Relationships between organic carbon, total nitrogen and organic nitrogen concentrations and variations in δ13Corg and δ15Norg are examined in surface sediments from the eastern central Arctic Ocean and the Yermak Plateau. Removing the organic matter from samples with KOBr/KOH and determining residual as well as total N shows that there is a significant amount of bound inorganic N in the samples, which causes TOC/Ntotal ratios to be low (4–10 depending on the organic content). TOC/Norg ratios are significantly higher (8–16). This correction of organic TOC/N ratios for the presence of soil-derived bound ammonium is especially important in samples with high illite concentrations, the clay mineral mainly responsible for ammonium adsorption. The isotopic composition of the organic N fraction was estimated by determining the isotopic composition of the total and inorganic nitrogen fractions and assuming mass-balance. A strong correlation between δ15Norg values of the sediments and the nitrate concentration of surface waters indicates different relative nitrate utilization rates of the phytoplankton in various regions of the Arctic Ocean. On the Yermak Plateau, low δ15Norg values correspond to high nitrate concentrations, whereas in the central Arctic Ocean high δ15Norg values are found beneath low nitrate waters. Sediment δ13Corg values are close to −23.0‰ in the Yermak Plateau region and approximately −21.4‰ in the central Arctic Ocean. Particulate organic matter collected from meltwater ponds and ice-cores are relatively enriched in 13C (δ13Corg=−15.3 to −20.6‰) most likely due to low CO2(aq) concentrations in these environments. A maximum terrestrial contribution of 30% of the organic matter to sediments in the central Arctic Ocean is derived, based on the carbon isotope data and various assumptions about the isotopic composition of the potential endmembers.  相似文献   

18.
Lipids in surface sediment transects across the Arctic Ocean were identified to define the sources of organic carbon and the transport of material in the ocean basin. Sterols representing diatoms (24-methylcholesta-5,24(28)-dien-3β-ol, 24-methylcholesta-5,22-dien-3β-ol) and dinoflagellates (4α,23,24-trimethylcholest-22-en-3β-ol) together with algal polyunsaturated fatty acids (20:5, 22:6) demonstrated the importance of primary production to organic matter inputs on the Chukchi Shelf. The presence of terrestrial biomarkers including long-chain n-alkanes and mono- and dicarboxylic acids in shelf sediments indicated that while the fraction of terrestrial biomarkers was small compared to marine material, the transport of allochthonous material impacts carbon cycling on the shelf. Algal biomarkers were found in all surficial sediments from the central Arctic basins, demonstrating that some fraction of primary production reached bottom sediments despite ice cover and light limitation. Marine markers represented a small fraction of the total lipids in central basin sediments. This implies that the basins are less productive than shallow waters, significant degradation occurs before the organic matter reaches the sediment–water interface, and substantial amounts of vascular plant material are exported to the central Arctic. Circulation and topographical features, such as the Transpolar Drift and the Lomonosov Ridge, appear to have an important influence on the transport and focusing of terrestrial material in the Arctic Ocean basins.  相似文献   

19.
Organic matter in a tropical mangrove ecosystem was characterized by stable carbon and nitrogen isotopic analyze, conducted on various organic samples, including land and mangrove plants, soils, particulate organic matter (POM), and sea and river sediments along the southwestern coast of Thailand. The δ13C values of land plants and POM in river water can be explained in terms of a greater influence of C3 plants than C4 plants in this area. The POM and sediments from the Trang River and Ko Talibong area showed systematically higher δ15N values than those from Ko Muk and other coastal areas. Organic matter in the Trang River might be influenced by nitrogen released from agricultural or human waste, which could affect the isotopic composition of POM and sediments in the Trang River estuary and along the coast near the river mouth. We used a stochastic method to estimate the contributions of four organic end-members, identifiable by their δ13C and δ15N values. The results implied that seagrasses were a major source of sedimentary organic matter, contributing 42 ± 5% in the Ko Muk area and 36 ± 5% in the Ko Talibong area. The contribution of coastal POM to sediments was estimated to be only 13% in Ko Muk and 19% in Ko Talibong. Mangrove plants contributed approximately 23% in both areas. It was concluded that seagrasses are an important source of sedimentary organic matter in this coastal region of southwestern Thailand. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
The processes involved in the interaction between organic fluids and carbonates, and the resulting effect on reservoir quality during the evolution and maturation of organic matter remain unclear despite the fact that these processes influence the carbon and oxygen isotopic compositions of carbonates. Here, we provide new insights into these processes using data obtained from a detailed analysis of a mixed dolomitic–clastic and organic-rich sedimentary sequence within the middle Permian Lucaogou Formation in the Junggar Basin of NW China. The techniques used during this study include drillcore observations, thin section petrography, scanning electron microscopy (SEM) and electron probe microanalysis, and carbon and oxygen isotope analyses. Oil grades and total organic carbon (TOC) contents represent the amount of oil charging and the abundance of organic fluids within a reservoir, respectively, and both negatively correlate with the whole-rock δ13C and δ18O of the carbonates in the study area, indicating that organic fluids have affected the reservoir rocks. Secondary carbonates, including sparry calcite and dolomite overgrowths and cements, are common within the Lucaogou Formation. Well-developed sparry calcite is present within dark mudstone whereas the other two forms of secondary carbonates are present within the dolomite-rich reservoir rocks in this formation. Comparing thin section petrology with δ13C compositions suggests that the carbon isotopic composition of matrix carbonates varies little over small distances within a given horizon but varies significantly with stratigraphic height as a result of the development of secondary carbonates. The net change in whole-rock δ13C as a result of these secondary carbonates ranges from 1.8‰ to 4.6‰, with the secondary carbonates having calculated δ13C compositions from −18.6‰ to −8.5‰ that are indicative of an organic origin. The positive correlation between the concentration of Fe within matrix and secondary carbonates within one of the samples suggests that the diagenetic system within the Lucaogou Formation was relatively closed. The correlation between δ13C and δ18O in carbonates is commonly thought to be strengthened by the influence of meteoric water as well as organic fluids. However, good initial correlation between δ13C and δ18O of whole rock carbonates within the Lucaogou Formation (resulted from the evaporitic sedimentary environment) was reduced by organic fluids to some extent. Consequently, the δ13C–δ18O covariations within these sediments are not always reliable indicators of diagenetic alteration by organic fluids or meteoric water.The characteristics and δ13C compositions of the sparry calcite within the formation is indicative of a genetic relationship with organic acids as a result of the addition of organic CO2 to the reservoir. Further analysis suggests that both carbonate and feldspar were dissolved by interaction with organic CO2. However, dissolved carbonate reprecipitated as secondary carbonates, meaning that the interaction between organic fluids and dolomites did not directly improve reservoir quality, although this process did enhance the dissolution of feldspar and increase porosity. This indicates that the δ13C and δ18O of secondary carbonates and their influence on whole-rock carbonate isotopic values can be used to geochemically identify the effect of organic fluids on closed carbonate-rich reservoir systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号