首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Mammalian target of rapamycin (mTOR) plays a pivotal role in many aspects of cellular proliferation, and recent evidence suggests that an altered mTOR signaling pathway plays a central role in the pathogenesis of aging, tumor progression, neuropsychiatric, and major depressive disorder. Availability of a mTOR‐specific PET tracer will facilitate monitoring early response to treatment with mTOR inhibitors that are under clinical development. Towards this we have developed the radiosynthesis of [18F]1‐(4‐(4‐(8‐oxa‐3‐azabicyclo[3.2.1]octan‐3‐yl)‐1‐(2,2,2‐trifluoroethyl)‐1H‐pyrazolo[3,4‐d]pyrimidin‐6‐yl)phenyl)‐3‐(2‐fluoroethyl)urea [18F]ATPFU ([18F]1) as an mTOR PET ligand. Synthesis of reference 1 and the precursor for radiolabeling, 4‐(4‐8‐oxa‐3‐azabicyclo[3.2.1]‐octan‐3yl)‐1‐(2,2,2‐trifluoroethyl)‐1H‐pyrazolo[3,4‐d]pyrimidin‐6yl)aniline (10), were achieved from beta‐chloroaldehyde 3 in 4 and 5 steps, respectively, with an overall yield of 25–28%. [18F]Fluoroethylamine was prepared by heating N‐[2‐(toluene‐4‐sulfonyloxy)ethyl]phthalimide with [18F]fluoride ion in acetonitrile. [18F]1 was obtained by slow distillation under argon of [18F]FCH2CH2NH2 into amine 10 that was pre‐treated with triphosgene at 0–5 °C. The total time required for the two‐step radiosynthesis including semi‐preparative HPLC purification was 90 min, and the overall radiochemical yield of [18F]1 for the process was 15 ± 5% based on [18F]fluoride ion (decay corrected). At the end of synthesis (EOS), the specific activity was 37–74 GBq/µmol (N = 6).  相似文献   

2.
A fully automated synthesis of N‐succinimidyl 4‐[18F]fluorobenzoate ([18F]SFB) was carried out by a convenient three‐step, one‐pot procedure on the modified TRACERlab FXFN synthesizer, including [18F]fluorination of ethyl 4‐(trimethylammonium triflate)benzoate as the precursor, saponification of the ethyl 4‐[18F]fluorobenzoate with aqueous tetrapropylammonium hydroxide instead of sodium hydroxide, and conversion of 4‐[18F]fluorobenzoate salt ([18F]FBA) to [18F]SFB treated with N,N,N′,N′‐tetramethyl‐O‐(N‐succinimidyl)uranium tetrafluoroborate (TSTU). The purified [18F]SFB was used for the labeling of Tat membrane‐penetrating peptide (containing the Arg‐Lys‐Lys‐Arg‐Arg‐Arg‐Arg‐Arg‐Arg‐Arg‐Arg‐Pro‐Leu‐Gly‐Leu‐Ala‐Gly‐Glu‐Glu‐Glu‐Glu‐Glu‐Glu‐Glu sequence, [18F]CPP) through radiofluorination of lysine amino groups. The uncorrected radiochemical yields of [18F]SFB were as high as 25–35% (based on [18F]fluoride) (n=10) with a synthesis time of~40 min. [18F]CPP was produced in an uncorrected radiochemical yields of 10–20% (n=5) within 30 min (based on [18F]SFB). The radiochemical purities of [18F]SFB and [18F]CPP were greater than 95%. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
[18F]SPA‐RQ is an effective radioligand for imaging brain neurokinin type‐1 (NK1) receptors in clinical research and drug discovery with positron emission tomography. For the automated regular production of [18F]SPA‐RQ for clinical use in the USA under an IND we chose to use a modified commercial synthesis module (TRACERlab FXF‐N; GE Medical Systems) with an auxiliary custom‐made robotic cooling–heating reactor, after evaluating several alternative radiosynthesis conditions. The automated radiosynthesis and its quality control are described here. [18F]SPA‐RQ was regularly obtained within 150 min from the start of radiosynthesis in high radiochemical purity (>99%) and chemical purity and with an overall decay‐corrected radiochemical yield of 15±2% (mean±S.D.; n=10) from cyclotron‐produced [18F]fluoride ion. The specific radioactivity of [18F]SPA‐RQ at the end of synthesis ranged from 644 to 2140 mCi/µmol (23.8–79.2 GBq/µmol). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
The one step radiosynthesis of 2‐amino‐6‐ [18F]fluoro‐9‐(4‐hydroxy‐3‐hydroxymethylbutyl) purine (6‐[18F]fluoropenciclovir) 6 is reported. Radiolabeled product 6‐[18F]fluoropenciclovir 6 was prepared by radiofluorination of compound 4 with [18F]KF and isolated by a silica Sep‐Pak cartridge. The radiochemical yield of compound 6 was 45–55% decay corrected (d.c.) in six runs with radiochemical purity >98% and the radiosynthesis time was 35–42 min from end of bombardment (EOB). Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
The radiosynthesis of N‐(5‐(((5‐(tert‐butyl)oxazol‐2‐yl)methyl)thio)thiazol‐2‐yl)‐4‐[18F]fluoro‐benzamide [18F]2 as a potential radiotracer for molecular imaging of cyclin‐dependent kinase‐2 (CDK‐2) expression in vivo by positron emission tomography is described. Two different synthesis routes were envisaged. The first approach followed direct radiofluorination of respective nitro‐ and trimethylammonium substituted benzamides as labeling precursors with no‐carrier‐added (n.c.a.) [18F]fluoride. A second synthesis route was based on the acylation reaction of 2‐aminothiazole derivative with labeling agent [18F]SFB. Direct radiofluorination afforded 18 F‐labeled CDK‐2 inhibitor in very low yields of 1%–3%, whereas acylation reaction with [18F]SFB gave 18 F‐labeled CDK‐2 inhibitor [18 F]2 in high yields of up to 85% based upon [18 F]SFB during the optimization experiments. Large scale preparation afforded radiotracer [18 F]2 in isolated radiochemical yields of 37%–44% (n = 3, decay‐corrected) after HPLC purification within 75 min based upon [18 F]SFB. This corresponds to a decay‐corrected radiochemical yield of 13%–16% based upon [18F]fluoride. The radiochemical purity exceeded 95% and the specific activity was determined to be 20 GBq/µmol. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
4‐[18F]Fluoro‐N‐hydroxybenzimidoyl chloride (18FBIC), an 18F‐labelled aromatic nitrile oxide, was developed as building block for Ru‐promoted 1,3‐dipolar cycloaddition with alkynes. 18FBIC is obtained in a one‐pot synthesis in up to 84% radiochemical yield (RCY) starting from [18F]fluoride with 4‐[18F]fluorobenzaldehyde (18FBA) and 4‐[18F]fluorobenzaldehyde oxime (18FBAO) as intermediates, by reaction of 18FBAO with N‐chlorosuccinimide (NCS). 18FBIC was found to be a suitable and stable synthon to give access to 18F‐labelled 3,4‐diarylsubstituted isoxazoles by [Cp*RuCl(cod)]‐catalysed 1,3‐dipolar cycloaddition with various alkynes. So the radiosynthesis of a fluorine‐18–labelled COX‐2 inhibitor [18F] 1b , a close derivative of valdecoxib, was performed with 18FBIC and 1‐ethynyl‐4‐(methylsulfonyl)benzene, providing [18F] 1b in up to 40% RCY after purification in 85 minutes. The application of 18FBIC as a building block in the synthesis of 18F‐labelled heterocycles will generally extend the portfolio of available PET radiotracers.  相似文献   

7.
The first application of the Horner–Wadsworth–Emmons reaction in 18F‐chemistry is described. This carbonyl‐olefination reaction was performed via a ‘multi‐step/one‐pot’ reaction by the coupling of benzylic phosphonic acid esters (3,5‐bis‐methoxymethoxybenzyl)‐phosphonic acid diethyl ester 2e , (4‐methoxy‐methoxybenzyl)‐phosphonic acid diethyl ester 3e and (4‐dimethyl‐aminobenzyl)phosphonic acid diethyl ester 4d ) with 4‐[18F]fluorobenzaldehyde to give the corresponding 18F‐labelled stilbenes [18F]2g , [18F]3g and [18F]4e exclusively as the expected E‐isomers. The radiochemical yields ranged from 9% to 22% (based upon [18F]fluoride, including HPLC purification). The specific activity reached up to 90 GBq/µmol. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
The fluorine‐18‐labeled positron emission tomography (PET) radiotracer [18F]MK‐9470 is a selective, high affinity inverse agonist that has been used to image the cannabinoid receptor type 1 in human brain in healthy and disease states. This report describes a simplified, one‐step [18F]radiofluorination approach using a GE TRACERlab FXFN module for the routine production of this tracer. The one‐step synthesis, by [18F]fluoride displacement of a primary tosylate precursor, gives a six‐fold increase in yield over the previous two‐step method employing O‐alkylation of a phenol precursor with 1,2‐[18F]fluorobromoethane. The average radiochemical yield of [18F]MK‐9470 using the one‐step method was 30.3 ± 11.7% (n = 12), with specific activity in excess of 6 Ci/µmol and radiochemical purity of 97.2 ± 1.5% (n = 12), in less than 60 min. This simplified, high yielding, automated process was validated for routine GMP production of [18F]MK‐9470 for clinical studies.  相似文献   

9.
An efficient preparation of N‐succinimidyl 4‐[18F]fluorobenzoate ([18F]SFB) based on a convenient three‐step, one‐pot procedure is described. [18F]Fluorination of the precursor ethyl 4‐(trimethylammonium triflate)benzoate gave ethyl 4‐[18F]fluorobenzoate. Saponification of the ethyl 4‐[18F]fluorobenzoate with aqueous tetrapropylammonium hydroxide yielded the corresponding 4‐[18F]fluorobenzoate salt ([18F]FBA), which was then treated with N,N,N,N′‐tetramethyl‐O‐(N‐succinimidyl)uronium hexafluorophosphate. The purified [18F]SFB was used for the labeling of Avastin? (Bevacizumab) through [18F]fluorobenzoylation of the Avastin's α‐amino groups. The decay‐corrected radiochemical yields of [18F]SFB were as high as 44% (based on [18F]fluoride (n=10) with a synthesis time of less than 60 min. [18F]Avastin was produced in decay‐corrected radiochemical yields of up to 42% (n=5) within 30 min (based on [18F]SFB). The radiochemical purities of [18F]SFB and [18F]Avastin were greater than 95%. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
Fluorine‐18–labelled 6‐(fluoro)‐3‐(1H‐pyrrolo[2,3‐c]pyridin‐1‐yl)isoquinolin‐5‐amine ([18F]MK‐6240) is a novel potent and selective positron emission tomography (PET) radiopharmaceutical for detecting human neurofibrillary tangles, which are made up of aggregated tau protein. Herein, we report the fully automated 2‐step radiosynthesis of [18F]MK‐6240 using a commercially available radiosynthesis module, GE Healthcare TRACERlab FXFN. Nucleophilic fluorination of the 5‐diBoc‐6‐nitro precursor with potassium cryptand [18F]fluoride (K[18F]/K222) was performed by conventional heating, followed by acid deprotection and semipreparative high‐performance liquid chromatography under isocratic conditions. The isolated product was diluted with formulation solution and sterile filtered under Current Good Manufacturing Practices, and quality control procedures were established to validate this radiopharmaceutical for human use. At the end of synthesis, 6.3 to 9.3 GBq (170‐250 mCi) of [18F]MK‐6240 was formulated and ready for injection, in an uncorrected radiochemical yield of 7.5% ± 1.9% (relative to starting [18F]fluoride) with a specific activity of 222 ± 67 GBq/μmol (6.0 ± 1.8 Ci/μmol) at the end of synthesis (90 minutes; n = 3). [18F]MK‐6240 was successfully validated for human PET studies meeting all Food and Drug Administration and United States Pharmacopeia requirements for a PET radiopharmaceutical. The present method can be easily adopted for use with other radiofluorination modules for widespread clinical research use.  相似文献   

11.
[18F]MK‐6240 (6‐(fluoro)‐3‐(1H‐pyrrolo[2,3‐c]pyridin‐1‐yl)isoquinolin‐5‐amine) is a highly selective PET radiotracer for the in vivo imaging of neurofibrillary tangles (NFTs). [18F]MK‐6240 was synthesized in one step from its bis‐Boc protected precursor N‐[(tert‐butoxy)carbonyl]‐N‐(6‐nitro‐3‐[1H‐pyrrolo[2,3‐c]pyridin‐1‐yl]isoquinolin‐5‐yl) carbamate in DMSO using [18F] fluoride with TEA HCO3 with step‐wise heating up to 150°C, resulting in an isolated radiochemical yield of 9.8% ± 1.8% (n = 3) calculated from the end of bombardment (5.2% ± 1.0% calculated from the end of synthesis). This new synthetic approach eliminates the acidic deprotection of the bis‐Boc 18F‐labeled intermediate, which reduces the number of operations necessary for the synthesis as well as losses, which occur during deprotection and neutralization of the crude product mixture prior to the HPLC purification. The synthesis was performed automatically with a single‐use cassette on an IBA Synthera+ synthesis module. This synthesis method affords the radioligand with a reliable radiochemical yield, high radiochemical purity, and a high molar activity. [18F]MK‐6240 synthesized with this method has been regularly (n > 60) used in our ongoing human and animal PET imaging studies.  相似文献   

12.
This study describes the synthesis of a fluoroethylated derivative of [N‐methyl‐11C]2‐(4′‐methylaminophenyl)‐6‐hydroxybenzothiazole ([11C]6‐OH‐BTA‐1; Pittsburgh Compound B (PIB)), an already established amyloid imaging agent. The [11C]methylamino group of [11C]6‐OH‐BTA‐1 was formally replaced by a fluoroethyl group in a cold synthesis via N‐alkylation of N‐Boc‐2‐(4′‐aminophenyl)‐6‐(methoxyethoxymethoxy)benzothiazole with fluoroethyl tosylate. Subsequent deprotection gave the target compound 2‐[4′‐(2‐fluoroethyl)aminophenyl]‐6‐hydroxybenzothiazole (FBTA). In a radioligand competition assay on aggregated synthetic amyloid fibrils using N‐[3H‐methyl]6‐OH‐BTA‐1, 100 nM FBTA inhibited binding with 93 ± 1 and 83 ± 1% efficiency for Aβ1–40 and Aβ1–42, respectively. For the radiosynthesis a precursor carrying a tosylethyl moiety was prepared allowing the introduction of [18F]fluoride via nucleophilic substitution with [18F]tetra‐n‐butyl‐ammonium fluoride (TBAF). Subsequent removal of all protecting groups was performed in a one‐pot procedure followed by semi‐preparative HPLC, delivering the target compound [18F]FBTA in good radiochemical yield of 21% on average and radiochemical purity of ?98% at EOS. In vitro autoradiography on human postmortem AD brain tissue slices showed intense cortical binding of [18F]FBTA (1 nM), which was displaced in presence of 6‐OH‐BTA‐1 (1 µM). Brain up‐take was evaluated in wild‐type (wt) mice with microPET imaging. Based on these results, [18F]FBTA appears to be a suitable candidate tracer for amyloid imaging in humans. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
High specific activity is often a significant requirement for radiopharmaceuticals. To achieve that with fluorine‐18 (18F)‐labeled probes, it is mandatory to start from no‐carrier–added fluoride and to reduce to a minimum the amount of precursor in order to decrease the presence of any pseudocarrier. In the present study, a feasible and efficient method for microscale one‐pot radiosynthesis of 18F‐labeled probes is described. It allows a substantial reduction in precursor, solvent, and reagents, thus reducing also possible side reaction in the case of base‐sensitive precursors. The method is based on the use of a small amount of Kryptofix 2.2.2/potassium [18F]fluoride in MeOH (K.222/K[18F]F‐MeOH) obtained using Oasis MAX and MCX cartridges. Five methods, differing in terms of MeOH evaporation and precursor addition, for the radiosynthesis of [18F]fallypride and [18F]FET in ≤50‐μL scale, were examined and evaluated. The method using the addition of DMSO to the K.222/K[18F]F‐MeOH solution prior to MeOH evaporation is proposed as a versatile procedure for feasible one‐pot 10‐ to 20‐μL scale radiosyntheses. This method was successfully applied also to the radiosynthesis of [18F]FES, [18F]FLT, and [18F]FMISO, with radiochemical yields comparable with those reported in the literature. Purification of a crude product by an analytical HPLC column was also demonstrated.  相似文献   

14.
A novel phosphonium salt bearing a fluorine‐18 labelled triazole has been designed as a potential imaging agent for apoptosis. The radiosynthesis of [1‐(2‐[18F]fluoroethyl),1H[1,2,3]triazole 4‐ethylene] triphenylphosphonium bromide ([18F]MitoPhos_01) has been carried out on a fully automated system in a two‐step reaction. Radiolabelling an ethyl azide and then carrying out a copper‐mediated 1,3‐cycloaddition reaction has allowed for total synthesis time to be slightly more than 1 h from aqueous [18F]fluoride. After purification by HPLC, the average radiochemical yield was determined to be 9% (not decay corrected); the specific activity was on average 70 GBq/µmol at the end of synthesis, and the radiochemical purity was >99%.  相似文献   

15.
PipISB [N‐(4‐fluoro‐benzyl)‐4‐(3‐(piperidin‐1‐yl)‐indole‐1‐sulfonyl)benzamide, 9] was identified as a selective high potency CB1 receptor ligand. Here we describe the labeling of 9 with positron‐emitters to provide candidate radioligands for imaging brain CB1 receptors with positron emission tomography (PET). The radiolabeling of 9 was achieved by two methods, method A with carbon‐11 and method B with fluorine‐18. In method A, [11C]9 was prepared in one step from [11C]carbon monoxide, itself prepared from cyclotron‐produced [11C]carbon dioxide. In method B, [18F]9 was prepared from cyclotron‐produced [18F]fluoride ion in a two‐stage, four‐step synthesis with [18F]4‐fluoro‐benzyl bromide as a labeling agent. The radiosynthesis time for method A was 44 min; decay‐corrected radiochemical yields (RCYs) from [11C]carbon monoxide ranged from 3.1 to 11.6% and specific radioactivities ranged from 21 to 67 GBq/µmol. The radiosynthesis time for method B was 115 min; RCYs from [18F]fluoride ion ranged from 1.5 to 5.6% and specific radioactivities ranged from 200 to 348 GBq/µmol. With these methods, [11C]9 and [18F]9 may be prepared in adequate activity and quality for future evaluation as PET radioligands. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
The synthesis of 1‐(5‐chloro‐2‐{2‐[(2R)‐4‐(4‐[18F]fluorobenzyl)‐2‐methylpiperazin‐1‐yl]‐2‐oxoethoxy}phenyl)urea ( [18F]4 ), a potent nonpeptide CCR1 antagonist, is described as a module‐assisted two‐step one‐pot procedure. The final product was obtained utilizing the reductive amination of the formed 4‐[18F]fluorobenzaldehyde ( 2 ) with a piperazine derivative 3 and sodium cyanoborohydride. After HPLC purification of the final product [18F]4 , its solid phase extraction, formulation and sterile filtration, the isolated (not decay‐corrected) radiochemical yields of [18F]4 were between 7 and 13% (n=28). The time of the entire manufacturing process did not exceed 95 min. The radiochemical purity of [18F]4 was higher than 95%, the chemical purity ?60% and the enantiomeric purity >99.5%. The specific radioactivity was in the range of 59–226 GBq/µmol at starting radioactivities of 23.6–65.0 GBq [18F]fluoride. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
A one‐pot radiosynthesis method to prepare the new fluorine‐18‐labelled fluoropyridine derivatives 5‐[18F]fluoro‐2‐pyridinamine and 6‐[18F]fluoro‐2‐pyridinamine in two to three reaction steps was developed. The first step consisted of no‐carrier‐added nucleophilic aromatic substitution of commercially available halogen‐substituted 2‐pyridinecarboxamide or 2‐pyridinecarbonitrile derivatives with K[18F]F‐K222 in DMSO at 150–180°C. The [18F]fluoride incorporation yields ranged from 67 to 98% for all studied precursor molecules. It is remarkable that 5‐bromo‐2‐pyridinecarbonitrile gave almost quantitative [18F]fluoride incorporation at the meta‐position (5‐position) of the pyridine ring after only 5 min of heating at 150°C. After base‐catalysed hydrolysis of the [18F]fluorinated pyridinecarbonitriles into their corresponding carboxamides, the latter were transformed in a Hofmann‐type rearrangement reaction into the respective amines by treatment of crude reaction mixtures with bromine and aqueous base (20–30% conversion yield). Reaction mixtures were purified by reversed‐phase semipreparative HPLC followed by strong cation exchange solid‐phase extraction to afford 5‐[18F]fluoro‐2‐pyridinamine and 6‐[18F]fluoro‐2‐pyridinamine in non‐decay‐corrected radiochemical yields of 6–10% in a total synthesis time of 83–112 min. The preparation of 5‐[18F]fluoro‐2‐pyridinamine is one of very few examples demonstrating the feasibility of nucleophilic meta‐[18F]fluorination of a pyridine derivative. Both 5‐[18F]fluoro‐2‐pyridinamine and 6‐[18F]fluoro‐2‐pyridinamine are new potentially useful radiolabelled synthons for radiopharmaceutical chemistry. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
A General Electric Medical Systems (GEMS) Tracerlab FXFN fluorine‐18 synthesis module has been reconfigured to allow rapid (45 min), fully automated production of N‐succinimidyl 4‐[18F]fluorobenzoate ([18F]SFB) using the established three‐step, one‐pot synthesis procedure. Purification is by sep‐pak only and [18F]SFB is routinely obtained in 38% non‐decay corrected yield,>1 Ci/µmol specific activity, and >95% radiochemical purity (n=20). Moreover, this report includes our preliminary research efforts into improving peptide coupling reactions with [18F]SFB using microwave‐enhanced radiochemistry. Reaction times can be reduced by>90%, when compared with traditional thermal reactions, with no significant effect on radiochemical reaction yield. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
We report initial experience in synthesis of (2S,4R)‐4‐[18F]fluoroglutamine, [18F]FGln, which has been used as a tool for monitoring glutamine metabolism in cancer patients. [18F]FGln was prepared by a fully automated PET‐MF‐2V‐IT‐I synthesizer under GMP‐compliant conditions for routine clinical studies. The total radiosynthesis time was about 65 minutes, the decay‐corrected radiochemical yield was 18.0 ± 4.2% (n = 59; failure n = 15), and the radiochemical purity was greater than 90%. In some situations, the yields were low (less than 5%), and the most likely cause of this problem is the initial fluorination step; the fluoride ion might not have been fully activated. In other occasions, low final radiochemical purity was often associated with the failure of the second step—removal of protection groups by anhydrous trifluoroacetic acid. A trace amount of water led to production of undesired 4‐[18F]fluoroglutamic acid. Knowledge learned from the successes and failures of synthesis may be helpful to identify critical steps and pitfalls for preparation of this clinically useful metabolic probe, [18F]FGln, for imaging glutamine utilization in tumor of cancer patients.  相似文献   

20.
Fluoroquinolones are an important class of antibiotic agents with a broad spectrum of antibacterial activity. Labelling of fluoroquinolones with fluorine‐18 is of interest for the performance of pharmacokinetic measurements and the visualization of bacterial infections in humans with positron emission tomography. A two‐step radiosynthetic pathway to prepare fluorine‐18‐labelled ciprofloxacin (1‐cyclopropyl‐6‐[18F]fluoro‐1,4‐dihydro‐4‐oxo‐7‐(1‐piperazinyl)‐quinoline‐3‐carboxylic acid) has previously been developed. In the present work this approach was applied to the preparation of the structurally related compounds [18F]norfloxacin (1‐ethyl‐6‐[18F]fluoro‐1,4‐dihydro‐4‐oxo‐7‐(1‐piperazinyl)‐quinoline‐3‐carboxylic acid) and [18F]pefloxacin (1‐ethyl‐6‐[18F]fluoro‐1,4‐dihydro‐7‐(4‐methyl‐1‐piperazinyl)‐4‐oxo‐quinoline‐3‐carboxylic acid). The first step of the radiosynthesis consisted of a 18F for 19F exchange reaction on a 7‐chloro‐substituted precursor molecule, followed by coupling reactions with the amines piperazine or 1‐methylpiperazine. Starting from 51–58 GBq of [18F]fluoride 1.9–2.0 GBq of [18F]norfloxacin or [18F]pefloxacin, ready for intravenous injection, could be obtained in a synthesis time of 130 min (3.5–3.8% overall radiochemical yield). Moreover, the preparation of [18F]levofloxacin ((‐)‐(S)‐9‐[18F]fluoro‐2,3‐dihydro‐3‐methyl‐10‐(4‐methyl‐1‐piperazinyl)‐7‐oxo‐7H‐pyrido[1,2,3‐de]‐1,4‐benzoxazine‐6‐carboxylicacid) was attempted but failed to afford the desired product in practical amounts. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号