首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calcium-based mixed oxides catalysts (CaMgO and CaZnO) have been investigated for the transesterification of Jatropha curcas oil (JCO) with methanol, in order to evaluate their potential as heterogeneous catalysts for biodiesel production. Both CaMgO and CaZnO catalysts were prepared by coprecipitation method of the corresponding mixed metal nitrate solution in the presence of a soluble carbonate salt at ∼ pH 8-9. The catalysts were characterized by X-ray diffraction (XRD), temperature programmed desorption of CO2 (CO2-TPD), scanning electron microscopy (SEM) and N2 adsorption (BET). The conversion of JCO by CaMgO and CaZnO were studied and compared with calcium oxide (CaO), magnesium oxide (MgO) and zinc oxide (ZnO) catalysts. Both CaMgO and CaZnO catalysts showed high activity as CaO and were easily separated from the product. CaMgO was found more active than CaZnO in the transesterification of JCO with methanol. Under the suitable transesterification conditions at 338 K (catalyst amount = 4 wt. %, methanol/oil molar ratio = 15, reaction time = 6 h), the JCO conversion of more than 80% can be achieved over CaMgO and CaZnO catalysts. Even though CaO gave the highest activity, the conversion of JCO decreased significantly after reused for forth run whereas the conversion was only slightly lowered for CaMgO and CaZnO after sixth run.  相似文献   

2.
3.
Heterogeneous transesterification of waste cooking palm oil (WCPO) to biodiesel over Sr/ZrO2 catalyst and the optimization of the process have been investigated. Response surface methodology (RSM) was employed to study the relationships of methanol to oil molar ratio, catalyst loading, reaction time, and reaction temperature on methyl ester yield and free fatty acid conversion. The experiments were designed using central composite by applying 24 full factorial designs with two centre points. Transesterification of WCPO produced 79.7% maximum methyl ester yield at the optimum methanol to oil molar ratio = 29:1, catalyst loading = 2.7 wt%, reaction time = 87 min and reaction temperature = 115.5 °C.  相似文献   

4.
Transesterifications of grain of corn oil samples in KOH catalytic and in supercritical methanol were studied without using any catalyst. Biodiesel, an alternative biodegradable diesel fuel, is derived from triglycerides by transesterification with methanol and ethanol. The transesterification reaction is affected by the molar ratio of glycerides to alcohol, catalysts, reaction temperature, reaction time and free fatty acids and water content of oils or fats. It was observed that increasing the reaction temperature, especially to supercritical temperatures, had a favorable influence on methyl ester (biodiesel) conversion. The molar ratio of methanol to corn germ oil is also one of the most important variables affecting the yield of methyl esters. Higher molar ratios result in greater ester production in a shorter time. In the transesterification, free fatty acids and water always produce negative effects, since the presence of free fatty acids and water causes soap formation, consumes catalysts, and reduces catalyst effectiveness, all of which result in a low conversion.  相似文献   

5.
Carbon dioxide (CO2) conversion to higher-value products is a promising pathway to mitigate CO2 emissions. Methanol is a high-value-chain chemical in industries that can be produced through CO2 hydrogenation, which is an exothermic reaction. Due to thermodynamic limitations, a typical synthesis temperature between 250 °C and 300 °C results in a low conversion of CO2 at equilibrium. To enhance the CO2 conversion, high pressures of 50–100 bar are required, which inevitably causes the process to be energy-intensive. In this study, an alternative method called alcohol-assisted methanol synthesis is investigated. In this method, alcohol is used as a catalytic solvent and helps decrease the reaction temperature and pressure (150 °C and 50 bar) and significantly increases methanol yield. Ethanol is used as the alcohol due to its reactivity, providing a high methanol yield (47.80%) with 63.93% CO2 conversion and 67.54% methanol selectivity. However, due to unwanted side reactions, ethanol generates ethyl acetate as a byproduct that forms an azeotrope with methanol, leading to difficulty in product purification. The effects of alcohol type (molecular weight and structure), including ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, iso-butanol, tert-butanol and 1-pentanol, on CO2 conversion, methanol yield and byproducts are investigated. It is found that smaller-molecule alcohols provide a higher methanol yield. Moreover, n-alcohols provide a higher methanol yield than branched alcohols, and the byproducts of the reaction with n-alcohols do not form an azeotrope with methanol. Therefore, 1-propanol is compared with ethanol providing 26.55% methanol yield, 69.02% CO2 conversion and 70.82% methanol selectivity.  相似文献   

6.
Lipase enzyme from Aspergillus oryzae (EC 3.1.1.3) was immobilized onto a micro porous polymeric matrix which contains aldehyde functional groups and methyl esters of long chain fatty acids (biodiesel) were synthesized by transesterification of crude canola oil using immobilized lipase. Micro porous polymeric matrix was synthesized from styrene-divinylbenzene (STY-DVB) copolymers by using high internal phase emulsion technique and two different lipases, Lipozyme TL-100L® and Novozym 388®, were used for immobilization by both physical adsorption and covalent attachment. Biodiesel production was carried out with semi-continuous operation. Methanol was added into the reactor by three successive additions of 1:4 M equivalent of methanol to avoid enzyme inhibition. The transesterification reaction conditions were as follows: oil/alcohol molar ratio 1:4; temperature 40 °C and total reaction time 6 h. Lipozyme TL-100L® lipase provided the highest yield of fatty acid methyl esters as 92%. Operational stability was determined with immobilized lipase and it indicated that a small enzyme deactivation occurred after used repeatedly for 10 consecutive batches with each of 24 h. Since the process is yet effective and enzyme does not leak out from the polymer, the method can be proposed for industrial applications.  相似文献   

7.
Biodiesel, which is derived from oil/fat by transesterification with alcohol, has attracted considerable attention over the past decades due to its ability to subsidise fossil fuel derived energy as a renewable and carbon neutral fuel. Several approaches for biodiesel fuel production have been developed, among which transesterification using a catalyst gives high yields of methyl ester. This method has therefore been widely utilized for biodiesel production in a number of countries. In this study, a Downflow Liquid Contactor Reactor (DLCR) has been used for the liquid–liquid transesterification reaction of sunflower oil with alcohol with extraordinary results. The reactor provides great potential for chemical reactions, which are normally limited by mass transfer and possesses a number of distinctive advantages over conventional multiphase reactors. Inside the reactor a high velocity liquid jet stream is produced which generates powerful shear and energy, causing vigorous agitation in the upper part of the reactor. The high mixing intensity in the DLCR enabled the manufacture of biodiesel to European Standard EN14214 (ester content 96.5%) in 2.5 min at 40 °C with 0.43 wt.% alkali catalyst and alcohol to oil molar ratio of 4.5 to 1.0. The separation of FAME from glycerol is done by gravity settling only without water washing. The effect of the alcohol type (methanol, ethanol) on biodiesel yield was also investigated. The process offers the advantage of continuous large scale production with limited reactor volume.  相似文献   

8.
The waste Capiz shell was utilized as raw material for catalyst production for biodiesel preparation. During calcination process, the calcium carbonate content in the waste capiz shell was converted to CaO. This calcium oxide was used as catalyst for transesterification reaction between palm oil and methanol to produce biodiesel. The biodiesel preparation was conducted under the following conditions: the mole ration between methanol and palm oil was 8:1, stirring speed was 700 rpm, and reaction temperature was 60 °C for 4, 5, and 6 h reaction time. The amount of catalyst was varied at 1, 2, 3, 4, and 5 wt %. The maximum yield of biodiesel was 93 ± 2.2%, obtained at 6 h of reaction time and 3 wt % of amount of catalyst. In order to examine the reusability of catalyst developed from waste of capiz (Amusium cristatum) shell, three transesterification reaction cycles were also performed.  相似文献   

9.
CuO/ZnO catalysts are synthesized using a co-precipitation method with different precipitation temperatures (298–353 K) and pH values (5–9). A conventional precipitation is compared to an ultrasonic-assisted precipitation at each precipitating temperature. Methanol is directly synthesized from CO2 and H2 (1:3 mol ratio) through an alcohol-assisted reaction (423 K, 5 MPa, 24 h) by using different alcohols (ethanol, propanol and butanol) as a medium. There are two parts for the challenge of this research, including the preparation of CuO/ZnO catalysts using an ultrasonic-assisted precipitation and, methanol synthesis through an alcohol-assisted method. It is found that the precipitation temperature and pH value significantly affect the catalyst properties and the reaction activity. An ultrasonic irradiation helps facilitate the crystalline phase formation and decrease precipitation temperature. The highest yield of methanol is obtained when CuO/ZnO is precipitated at 333 K from the conventional precipitation (31%) while it is at 313 K from the ultrasonic-assisted precipitation (32%). In addition, the different type of alcohol strongly affects methanol yield and CO2 conversion. The use of larger alcohol molecules offers higher CO2 conversion but lower methanol yield.  相似文献   

10.
Biodiesel has become more attractive recently because of its environmental benefits and the fact that it is made from renewable resources. Transesterification of vegetable oils with short-chain alcohol has long been a preferred method for producing biodiesel fuel. A new reactor was developed to produce fatty acid methyl esters (FAME) by blowing bubbles of superheated methanol vapor continuously into vegetable oil without using any catalysts. A kinetic study on the non-catalytic transesterification of palm oil was made in a reactor without stirring at atmospheric pressure. The effects of reaction temperatures (523, 543, and 563 K) on the rate constant, conversion, yield of methyl esters (ME) and composition of the reaction product under semi-batch mode operation are investigated. The activation energy and the frequency factor values of the transesterification reaction obtained in this experiment are 31 kJ/mol and 4.2, respectively. The optimum reaction temperature which gives the highest ME content (95.17% w/w) in the reaction product is 523 K, while the rate constant of the total system increased with reaction temperature.  相似文献   

11.
A series of mesoporous Zr-SBA-15-supported Na catalysts was prepared and applied to the heterogeneous catalysis of canola oil transesterification. The effects of Si/Zr ratio, reaction time, and percentage of Na loading on the conversion to fatty acid methyl esters (FAME) were studied. The dependence of the textural structure and chemical properties of Zr-SBA-15 supports on Zr content was investigated using small-angle X-ray diffraction, Brunauer–Emmett–Teller analysis, transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy. The results obtained from FTIR and TEM indicate that the incorporation of Zr atoms into the SBA-15 structure facilitated the formation of Brönsted acid sites and decreased the particle size of Na species. Catalysts with a higher Zr content enhanced the FAME yield. The optimum conditions determined were as follows: reaction temperature of 70 °C, 15 wt.% Na, reaction time of 6 h, and 12% catalyst content (wt.% oil) with a methanol/oil molar ratio of 6:1. The optimum conditions resulted in a FAME yield of up to 99%.  相似文献   

12.
Ag/bauxite nanocomposites have been prepared using in situ reduction of aqueous AgNO3 solution in a bauxite matrix and investigated for the transesterification of sunflower oil with methanol in order to study their potential as heterogeneous catalysts. The prepared nanocopmosites were characterized by XRD, SEM, EDX, FT-IR, and TG- DTA. The Central Composite Design of the Response Surface Methodology was used to optimize the effect of reaction temperature, reaction time, catalyst loading and methanol to oil molar ratio on the yield of fatty acid methyl esters. The highest yield was obtained at 67 °C reaction temperature, 3 h reaction time, 0.3 wt.% catalyst loading and 9:1 methanol to oil molar ratio. Under the optimal conditions, the methyl ester content was 94% and the catalyst successfully reused for at least 7 cycles without significant deactivation.  相似文献   

13.
This work investigates and compares the reaction performance of soybean oil transesterification under supercritical methanol and ethanol, in a continuous catalyst-free process, as a cleaner alternative to conventional chemically catalyzed process. Reactions were performed in a tubular reactor, at 20 MPa, with oil to alcohol ratio of 1:40, varying the temperature in the range from 250 °C to 350 °C, and at two levels of water concentrations, 0 and 10 wt%. Although both processes proceeded with a relatively high reaction rate, conversion achieved by methanolysis was higher than that obtained by ethanolysis. Water positively affected both process: higher ester content and triacylglycerols depletion occurred when 10 wt% water was used compared with anhydrous conditions. Temperature increase favored the conversion of soybean oil to the corresponding methyl or ethyl esters, although temperatures above 300 °C increased the fatty acid degradation degree, a phenomenon responsible for the low ester contents obtained at the highest temperatures and lowest flow rates studied.  相似文献   

14.
In this study different methods were applied for lipids extraction from the dry biomass of Chlorella pyrenoidosa. The survey was carried under different conditions seeking comparative assessment of extraction methods. The method using chloroform:methanol (2:1 v/v) showed the highest lipid extraction followed by methanol, chloroform, ethanol, and hexane. Afterward, we also assessed the relative influence of the solvent extractor selectivity on the overall FAMEs (Fatty Acids Methyl Esters) yield. The application of the transesterification process on the several lipidic extracts was compared with direct transesterification process from dry biomass. In the extraction using chloroform:methanol system a larger amount of lipids was obtained but the conversion to FAMEs using transesterification process was the lowest from lipids. However, despite the amount of extracted lipids with methanol being smaller, its conversion to FAMEs was higher from lipids. In addition, the extraction with methanol followed by transesterification process also resulted in a higher FAMEs yield from biomass than direct transesterification process using methanol.  相似文献   

15.
The biodiesel (fatty acid methyl esters, FAME) was prepared by transesterification of the mixed oil (soybean oil and rapeseed oil) with sodium hydroxide (NaOH) as catalyst. The effects of mole ratio of methanol to oil, reaction temperature, catalyst amount and reaction time on the yield were studied. In order to decrease the operational temperature, a co-solvent (hexane) was added into the reactants and the conversion efficiency of the reaction was improved. The optimal reaction conditions were obtained by this experiment: methanol/oil mole ratio 5.0:1, reaction temperature 55 °C, catalyst amount 0.8 wt.% and reaction time 2.0 h. Under the optimum conditions, a 94% yield of methyl esters was reached ∼94%. The structure of the biodiesel was characterized by FT-IR spectroscopy. The sulfur content of biodiesel was determined by Inductively Coupled Plasma emission spectrometer (ICP), and the satisfied result was obtained. The properties of obtained biodiesel from mixed oil are close to commercial diesel fuel and is rated as a realistic fuel as an alternative to diesel. Production of biodiesel has positive impact on the utilization of agricultural and forestry products.  相似文献   

16.
The present study deals with the production of biodiesel using waste fish oil. The research assesses the effect of the transesterification parameters on the biodiesel yield and its properties, including temperature (40–60 °C), molar ratio methanol to oil (3:1–9:1) and reaction time (30–90 min). The experimental results were fitted to complete quadratic models and optimized by response surface methodology. All the biodiesel samples presented a FAME content higher than 93 wt.% with a maximum, 95.39 wt.%, at 60 °C, 9:1 of methanol to oil ratio and 90 min. On the other hand, a maximum biodiesel yield was found at the same methanol to oil ratio and reaction time conditions but at lower temperature, 40 °C, which reduced the saponification of triglycerides by the alkaline catalyst employed. Adequate values of kinematic viscosity (measured at 30 °C) were obtained, with a minimum of 6.30 mm2/s obtained at 60 °C, 5.15:1 of methanol to oil ratio and 55.52 min. However, the oxidative stability of the biodiesels produced must be further improved by adding antioxidants because low values of IP, below 2.22 h, were obtained. Finally, satisfactory values of completion of melt onset temperature, ranging from 3.31 °C to 3.83 °C, were measured.  相似文献   

17.
Evaluation of Radish (Raphanus sativus) seed oil (RSO) as a non-edible feedstock for biodiesel production was the main target of the present study. Extraction by solvent disclosed that radish seeds contains 33.50 wt.% of oil. Therefore, biodiesel production from it could be beneficial. Optimized base-catalyzed transesterification of RSO with methanol, ethanol and mixed methanol/ethanol was performed, to produce fatty acid methyl esters, fatty acid ethyl esters and mixed fatty acid methyl ethyl esters, respectively. The optimal yields of the methyl esters, ethyl esters and mixed methyl ethyl esters, were 95.55wt.%, 90.66 wt.% and 93.33 wt.%, respectively when the optimal reaction conditions were attained. Fuel properties of the parent oil were positively changed as consequence of transesterification reaction such that they fulfilled the standard limits as prescribed by ASTM D6751. Moreover, fuel properties of (biodiesels + petro diesel) blends conformed ASTM D7467-17 standards indicating their suitability as a fuel for diesel engines. Biodiesels form RSO were analyzed by thin layer chromatography and FTIR spectroscopy, and both techniques conformed its conversion into its corresponding alkyl esters.  相似文献   

18.
《Biomass & bioenergy》2006,30(3):267-272
The reaction kinetics of acid-catalyzed transesterification of waste frying oil in excess methanol to form fatty acid methyl esters (FAME), for possible use as biodiesel, was studied. Rate of mixing, feed composition (molar ratio oil:methanol:acid) and temperature were independent variables. There was no significant difference in the yield of FAME when the rate of mixing was in the turbulent range 100 to 600 rpm. The oil:methanol:acid molar ratios and the temperature were the most significant factors affecting the yield of FAME. At 70 °C with oil:methanol:acid molar ratios of 1:245:3.8, and at 80 °C with oil:methanol:acid molar ratios in the range 1:74:1.9–1:245:3.8, the transesterification was essentially a pseudo-first-order reaction as a result of the large excess of methanol which drove the reaction to completion (99±1% at 4 h). In the presence of the large excess of methanol, free fatty acids present in the waste oil were very rapidly converted to methyl esters in the first few minutes under the above conditions. Little or no monoglycerides were detected during the course of the reaction, and diglycerides present in the initial waste oil were rapidly converted to FAME.  相似文献   

19.
Methyl and ethyl esters as biodiesel fuels were prepared from linseed oil with transesterification reaction in non-catalytic supercritical fluids conditions. Biodiesel fuel is a renewable substitute fuel for petroleum diesel fuel made from vegetable or animal fats. Biodiesel fuel has better properties than that of petroleum diesel fuel such as renewable, biodegradable, non-toxic, and essentially free of sulfur and aromatics. The purpose of the transesterification process is to lower the viscosity of the oil. The viscosity values of linseed oil methyl and ethyl esters highly decreases after transesterification process. The viscosity values of vegetable oils vary between 27.2 and 53.6 mm2 s?1, whereas those of vegetable oil methyl esters between 3.59 and 4.63 mm2 s?1. Compared with no. 2 diesel fuel, all of the vegetable oil methyl esters were slightly viscous. The flash point values of vegetable oil methyl esters are highly lower than those of vegetable oils. The transesterification of linseed oil in supercritical fluids such as methanol and ethanol has proved to be the most promising process. Methanol is the commonly used alcohol in this process, due in part to its low cost. Methyl esters of vegetable oils have several outstanding advantages among other new-renewable and clean engine fuel alternatives. The most important variables affecting the methyl ester yield during the transesterification reaction are molar ratio of alcohol to vegetable oil and reaction temperature. Biodiesel has become more attractive recently because of its environmental benefits. Biodiesel is an environmentally friendly fuel that can be used in any diesel engine without modification.  相似文献   

20.
In the present research work, Nerium oleander oil has been used as raw material for producing biodiesel using both ultrasonic transesterification and a magnetic stirrer method. A two-step transesterification process was carried out for optimum condition of 0.40% V/V methanol to oil ratio, 1% V/V H2SO4 catalyst, 55°C temperature, and 60 min reaction time followed by treatment with 0.2% V/V methanol to oil ratio, 1% V/W KOH alkaline catalyst, 55°C temperature, and 60 min reaction time. The process is repeated with an ultrasonic method at the frequency of 28 kHz using ultrasonic horn type reactor (50 W) for about 10–15 min. Biodiesel obtained from ultrasonic method and magnetic stirrer was then compared for their percentage yield and physiochemical properties. Ultrasonic transesterification process gave a maximum yield of 97% by weight of oleander biodiesel along with improved physiochemical characteristics. Therefore, it is concluded that ultrasonic method is the most effective method for converting crude oleander oil into biodiesel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号