首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Companding transform is an efficient and simple method to reduce the Peak-to-Average Power Ratio (PAPR) for Multi-Carrier Modulation (MCM) systems. But if the MCM signal is only simply operated by inverse companding transform at the receiver, the resultant spectrum may exhibit severe in-band and out-of-band radiation of the distortion components, and considerable peak regrowth by excessive channel noises etc. In order to prevent these problems from occurring, in this paper, two novel nonlinear companding schemes with a iterative receiver are proposed to reduce the PAPR. By transforming the amplitude or power of the original MCM signals into uniform distributed signals, the novel schemes can effectively reduce PAPR for different modulation formats and sub-carrier sizes. Despite moderate complexity increasing at the receiver, but it is especially suitable to be combined with iterative channel estimation. Computer simulation results show that the proposed schemes can offer good system performances without any bandwidth expansion.  相似文献   

2.
针对网格正交频分复用(LOFDM,lattice OFDM)系统具有较传统OFDM系统更高峰均功率比(PAPR,peak-to-average power ratio)的问题,在将传统非线性压扩变换应用于LOFDM系统的同时研究并分析了一种新的基于原信号统计分布特性的连续可导非线性压扩算法。该算法从原信号的渐进高斯分布特性出发并对原信号的幅度分布函数进行截断逼近,在保持平均功率不变的条件下,将压扩后的信号限制在与原信号分布特性一致的特定范围内,使压扩后的信号在保持其原有分布特性的同时,能更大程度改善系统PAPR和误比特(BER,biterror ratio)性能。理论分析和仿真实验表明,所提出的算法性能要显著优于传统非线性压扩算法。  相似文献   

3.
Exponential companding technique for PAPR reduction in OFDM systems   总被引:7,自引:0,他引:7  
In this paper, a new nonlinear companding technique, called "exponential companding", is proposed to reduce the high Peak-to-Average Power Ratio (PAPR) of Orthogonal Frequency Division Multiplexing (OFDM) signals. Unlike the /spl mu/-law companding scheme, which enlarges only small signals so that increases the average power, the schemes based on exponential companding technique adjust both large and small signals and can keep the average power at the same level. By transforming the original OFDM signals into uniformly distributed signals (with a specific degree), the exponential companding schemes can effectively reduce PAPR for different modulation formats and sub-carrier sizes. Moreover, many PAPR reduction schemes, such as /spl mu/-law companding scheme, cause spectrum side-lobes generation, but the exponential companding schemes cause less spectrum side-lobes. Computer simulations, which consider a baseband OFDM system with Additive White Gaussian Noise (AWGN) channels and a Solid State Power Amplifier (SSPA), show that the proposed exponential companding schemes can offer better PAPR reduction, Bit Error Rate (BER), and phase error performance than the /spl mu/-law companding scheme.  相似文献   

4.
The 3rd generation partnership project long term evolution standard uses orthogonal frequency division multiplexing access in downlink and single carrier frequency division multiple access (SCFDMA) scheme for the uplink transmissions, which utilizes single carrier modulation and frequency domain equalization. In this paper, we proposed a Raised Cosine-like companding scheme to reduce the peak-to-average power ratio (PAPR) of SCFDMA signals. The proposed scheme can transform the original SCFDMA signals into Raised Cosine-like-distributed. Moreover, this scheme can compress the large signals, while maintaining the average power constant. Computer simulation results show that the proposed companding scheme can offer better PAPR reduction by properly choosing the parameters.  相似文献   

5.
Nonlinear companding transform is a promising technique for the peak-to-average power ratio (PAPR) reduction in multicarrier transmission systems. However, conventional hard piecewise companding schemes often along with serious nonlinear distortion or complex companding parameters optimization embarrassment. In this paper, a novel designing criterion of nonlinear companding functions with more effective system performance is proposed. By transforming the Gaussian-distributed multicarrier signals into desirable statistics forms, we show that the smooth and differentiable concave probability distribution function of companded signals can obtain a better PAPR reduction and less out-of-band radiation as well as more simple companding parameters optimization than the traditional piecewise companding schemes. A detailed theoretical analysis and discussion is formulated, and then based on the analysis results, a novel trigonometric function companding scheme is presented and evaluated. Numerical results demonstrate that the companding schemes which consistent with the proposed criterion may significantly outperform conventional schemes by choosing the companding form and parameters appropriately.  相似文献   

6.
A major drawback of orthogonal frequency-division multiplexing (OFDM) signals is their high peak-to-average power ratio (PAPR), which causes serious degradation in performance when a nonlinear power amplifier (PA) is used. Companding transform (CT) is a well-known method to reduce PAPR without restrictions on system parameters such as number of subcarriers, frame format and constellation type. Recently, a linear nonsymmetrical companding transform (LNST) that has better performance than logarithmic-based transforms such as $mu$-law companding was proposed. In this paper, a new linear companding transform (LCT) with more design flexibility than LNST is proposed. Computer simulations show that the proposed transform has a better PAPR reduction and bit error rate (BER) performance than LNST with better power spectral density (PSD).   相似文献   

7.
A new nonlinear companding transform scheme is proposed to reduce the peak-to-average ratio (PAPR) in orthogonal frequency division multiplexing (OFDM) signals. By exploiting statistical distribution of transmitted OFDM signals, the proposed scheme effectively reduces the PAPR by compressing the peak signals and expanding the small signals, while maintaining the average power unchanged by properly choosing transform parameters. The fact that the proposed companding scheme is described by a single-valued function allows to be transformed before amplification and to be restored the signals at the receiver. The proposed scheme can be applicable with any modulation format and subcarriers. Our simulations results confirm that the suggested scheme exhibits a good ability to reduce PAPR and a good BER performance with a solid state power amplifier (SSPA) in an additive white Gaussian noise (AWGN) channel.  相似文献   

8.
In this paper, we propose and evaluate a novel nonlinear companding transform (NCT) scheme for peak-to-average power ratio (PAPR) reduction in orthogonal frequency division multiplexing (OFDM) systems. The key idea of the proposed scheme is to transform the original Gaussian-distributed OFDM signals into a specific statistics form, whose target probability density function is defined by a piecewise function with an inflexion point. By properly choosing the transform parameters, this scheme can enable more flexibility and freedom in the companding form so that a favorable tradeoff between PAPR reduction and bit error rate (BER) performance can be achieved. Moreover, compared to existing NCT techniques, this scheme dramatically decreases the impact of companding distortion on the BER performance to reach a given PAPR level. The analytical expressions regarding the achievable transform gain in PAPR, complementary cumulative density function, attenuation coefficient, and selection criteria of transform parameters are derived. Simulation results justify the significance and accuracy of the analytical expressions presented.  相似文献   

9.
On the SER and spectral analyses of A-law companded multicarrier modulation   总被引:1,自引:0,他引:1  
A peak-to-average power ratio (PAPR) reduction technique based on A-law companding is proposed for a multicarrier modulation (MCM) system. Multicarrier modulation is also known as orthogonal frequency-division multiplexing (OFDM) or digital multitone. The symbol error rate (SER) and spectral property of the companded MCM system are investigated. The SER and spectral performance of the proposed system are also compared with the uncompanded MCM system.  相似文献   

10.
杨超  王勇  葛建华 《通信学报》2015,36(4):164-169
针对现有基于压扩变换处理的信号峰平比抑制方法性能单一且参数固定等缺陷,提出一种联合迭代滤波与自适应压扩参数优化的OFDM信号峰平比抑制方案。该方案能够同时对信号的峰平比PAPR和接收端误码率BER性能进行联合优化,并在迭代过程中有效消除因信号幅度畸变所引起的带外频谱再生;所提信号压扩及解压扩函数形式简单,计算复杂度较小;推导并给出了该方案可获得的PAPR抑制增益和BER理论性能界。仿真结果表明,该方案可同时获得较好的信号PAPR抑制、误码率以及带外功率谱性能,并在迭代过程中对压扩参数进行自适应调整,能够有效提高算法的适用灵活性。  相似文献   

11.
High peak-to-average power ratio (PAPR) in orthogonal frequency division multiplexing (OFDM) systems seriously impacts power efficiency in radio frequency section due to the nonlinearity of high-power amplifiers. In this article, an improved gamma correction companding (IGCC) is proposed for PAPR reduction and investigated under multipath fading channels. It is shown that the proposed IGCC provides a significant PAPR reduction while improving power spectral levels and error performances when compared with the previous gamma correction companding. IGCC outperforms existing companding methods when a nonlinear solid-state power amplifier (SSPA) is considered. Additionally, with the introduction of \(\alpha , \beta , \gamma \), and \(\varDelta \) parameters, the improved companding can offer more flexibility in the PAPR reduction and therefore achieves a better trade-off among the PAPR gain, bit error rate (BER), and power spectral density (PSD) performance. Moreover, IGCC improves the BER and PSD performances by minimizing the nonlinear companding distortion. Further, IGCC improves signal-to-noise ratio (SNR) degradation (\(\varDelta _{\mathrm{SNR}}\)) and total degradation performances by 12.2 and 12.8 dB, respectively, considering an SSPA with input power back-off of 3.0 dB. Computer simulation reveals that the performances of IGCC are independent of the modulation schemes and works with arbitrary number of subcarriers (N), while it does not increase computational complexity when compared with the existing companding schemes used for PAPR reduction in OFDM systems.  相似文献   

12.
Orthogonal frequency division multiplexing (OFDM) is perhaps the most spectrally efficient method discovered so far for communication systems and yet have an excellent immunity against multipath fading and inter-symbol interference. One of the major drawbacks of OFDM systems is their high peak-to-average power ratio (PAPR), which degrades system performance when nonlinear high power amplifiers (HPA) are employed. In this article, a new companding technique based on gamma correction (GC) function is proposed and analyzed. Through extensive computer simulations, it is shown that the proposed technique outperforms the previously suggested A-law and μ-law companding methods for PAPR reduction. A thorough investigation of GCC companding is presented in terms of computational complexity (CC), complementary cumulative distribution function (CCDF), power spectral density (PSD), and bit-error-rate (BER). It is also shown that the proposed method is independent of modulation schemes and can be applied to any number of subcarriers.  相似文献   

13.

To reduce the high peak-to-average power ratio (PAPR) of orthogonal frequency division multiplexing (OFDM) signal, a novel nonlinear companding transform (CT) scheme is proposed in this paper. This scheme can reallocate both the amplitude/power as well as statistical distribution of the companded signal more reasonably and flexibly than existing CT methods with low computational complexity. By choosing an appropriate companding parameter, it can provide more effective PAPR reduction but at the price of a minimal amount of bit-error-rate (BER) performance degradation caused by the companding distortion. The closed-form expressions including the achievable PAPR gain, signal attenuation factor, and corresponding selection criteria for the companding parameter were derived. Computer simulations demonstrate that the scheme significantly improves the overall performances of OFDM system in terms of PAPR, BER and bandwidth efficiency under the multipath fading channel or with the high power amplifier.

  相似文献   

14.
基于压扩变换的OFDM信号PAPR抑制方法具有实现简单、抑制效果明显的优点。对现有压扩变换PAPR抑制方法进行了分析和研究,并在此基础上,提出了一种基于均匀分布的压扩变换方法。该方法能够将任何分布的调制信号均变为均匀分布。仿真结果表明,与现有方法相比,该方法抑制PAPR的效果较为明显,且易于实现,具有较好的实用性。  相似文献   

15.
Piecewise companding transform is a flexible and efficient way to solve the high peak-to-average power ratio (PAPR) problem for orthogonal frequency division multiplexing (OFDM) systems. A novel threshold-based piecewise companding transform is proposed in this paper. Based on the statistical characteristics of amplitudes, OFDM signals are classified into three groups (i.e., small, average and large signals). Different from conventional approaches, two dedicated designed thresholds are set to amplify the small signals and compress the large signals, respectively. Simulation results verify the improvement in PAPR reduction of the proposed scheme. Moreover, a lower bit error rate (BER) performance loss can be obtained by introducing the iterative detection with a moderate increase in complexity.  相似文献   

16.
降低正交频分复用系统峰均功率比的部分压扩算法   总被引:2,自引:0,他引:2  
针对现有压扩变换法系统性能差的缺点,提出了一种降低系统峰均功率比的部分压扩算法。该方法根据正交频分复用(OFDM)系统信号幅度服从瑞利分布的统计特性,仅压缩大幅度信号保持了系统信号幅度的分布特征,弥补了现有压扩变换的不足,且具有带外功率小的优点。在M阶调制方式下的系统仿真结果表明,部分压扩方法与选择性映射和部分传输序列等方法相比,可获得相近的峰均功率比压缩效果并且在同样的系统误码率条件下比指数压扩法获得约log2(M)dB信噪比增益。  相似文献   

17.
A companding transform-based scheme for reducing peak-to-average power ratio (PAPR) of transmitted OFDM signals is proposed. This scheme effectively compresses large signals while enhancing small ones, achieving a significant reduction of PAPR with a low computational complexity  相似文献   

18.
Non-orthogonal multiple access (NOMA) is a great contender for future cellular modulation due to its desirable properties like massive connectivity, high data rate transmission, and high spectral efficiency. However, its peak-to-average power ratio (PAPR) is significant, which becomes a significant disadvantage for the efficient operability of the NOMA waveform compared to current techniques. Several PAPR reduction algorithms like selective mapping (SLM), partial transmission sequence (PTS), and companding techniques have been proposed to lower the PAPR of multicarrier waveforms (MCWs). PTS reduces the PAPR but has high complexity. On the other hand, SLM has a less complex framework, but its PAPR performance is not as efficient as PTS. Companding methods reduce the PAPR by compressing the signals at the transmitter, which unfortunately reduces the dynamic range of the signal. In this work, we propose a hybrid algorithm (SLM + PTS) with a companding method for the first time for the NOMA waveform, which efficiently reduces the PAPR with low computational complexity. Furthermore, we compare the performances of a host of candidate algorithms like SLM, PTS, hybrid (SLM + PTS), hybrid + A law (SLM–PTS–A law), and hybrid + Mu law (SLM–PTS–Mu law). The results of the experiments show that the hybrid + Mu law did a better job than the existing PAPR reduction algorithms.  相似文献   

19.
为了降低OFDM信号的峰均功率比(PAPR),设计了一种分段线性压扩变换.对小幅度通过数乘变换进行线性放大,而对大幅度先利用数乘变换进行线性缩小,再对缩小后的幅度进行等量放大.得到的压扩变换是分段线性且连续的,用低复杂度的线性运算抑制峰均比,同时用分段的方法减小压扩对系统性能的影响.理论分析和仿真表明,通过数乘因子和增...  相似文献   

20.
In this paper, a companding technique is proposed to effectively reduce the peak-to-average power ratio (PAPR) in single-carrier frequency division multiple access (SC-FDMA) systems. By companding the samples with large amplitudes, while enhancing those with small amplitudes, a significant reduction in the PAPR can be achieved. The performance of the proposed SC-FDMA with companding system is studied and compared with that of the standard SC-FDMA system. Simulation results show that the SC-FDMA with companding system has a lower PAPR when compared with the conventional SC-FDMA system, while the complexity of the system slightly increases. Results also reveal that the companding coefficient must be chosen carefully in order to limit the PAPR without introducing degradations into the bit error rate performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号