首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 778 毫秒
1.
淮河流域焦岗湖水质参数时空变化及影响因素   总被引:3,自引:1,他引:2  
焦岗湖是淮河左岸一个天然湖泊,集防洪、灌溉、养殖、旅游等多种功能于一体.利用焦岗湖4个季节水质监测数据,运用Kriging方法,分析焦岗湖水质参数的时空变化及影响因素.结果表明:由于受水文季节变化过程及人类活动等综合影响,焦岗湖水质参数在时间及空间上均存在一定差异.从时间变化来看,夏季透明度较低、秋季较高;溶解氧浓度在春、冬季显著高于夏、秋季;总氮、总磷浓度与高锰酸盐指数均表现为夏季最高、秋季最低.从空间变化来看,4个季节的透明度空间差异较为显著;溶解氧浓度在春、冬季空间分布较为均匀,夏季呈现中心高周围低的变化趋势,秋季则表现为西高东低;总磷浓度春季分布较为均匀,夏、秋及冬季则呈西高东低之势;高锰酸盐指数在春、秋季节呈现东高西低之势,夏季高浓度主要集中在湖区北部,冬季浓度变化不大.  相似文献   

2.
基于水质改善目标的太湖适宜换水周期分析   总被引:2,自引:1,他引:1  
准确估算换水周期对于研究湖泊水体化学、生物变化以及污染物迁移、扩散、转化有着重要意义,换水周期是湖泊的一个重要环境参数.根据2010年实测水文、气象和环湖水量、水质条件,建立3组情景模式:第1组为实况方案,第2组是环湖水量倍比缩放方案,第3组为望虞河水量倍比缩放方案.采用EcoTaihu模型模拟3组情景模式下太湖及各湖区营养盐状况,并根据实测结果对模型进行校验.模型计算结果表明:在2010年太湖水文、气象条件下,150~160 d换水周期条件下太湖氮、磷浓度最低,即太湖适宜换水周期为150~160 d.  相似文献   

3.
鄱阳湖水龄季节性变化特征   总被引:3,自引:1,他引:2  
基于环境水动力学模型EFDC源程序,建立了染色剂模型和水龄模型,在将模型与航测水文数据验证吻合的基础上,分别计算了鄱阳湖自然条件下春、夏、秋、冬季的水龄和倒灌前后鄱阳湖染色剂和水龄分布的变化,以及五河水系各分支河流水龄.分季节的水龄计算表明鄱阳湖水体交换受季节性来水影响明显.夏、秋季的水龄相对较小,在多数年份又受到长江水倒灌的影响导致水龄有所增大;冬、春季水龄较大,亦无长江水倒灌现象,相较于夏、秋季,水域面积明显减少.分支流的水龄计算表明,西南湖区的水体交换主要受到赣江的影响,西北湖区水体交换主要受到修水和赣江的影响,南部湖区主要受到抚河与信江的影响,东部湖区主要受到饶河的影响,湖心区和入江水道则受到五河水系的综合影响.同时水龄的研究表明拟建的鄱阳湖水利枢纽工程"调枯不调洪"的原则是合理的,为鄱阳湖水利枢纽工程论证提供了重要的参考依据.  相似文献   

4.
于2014年4、7和10月以及2015年1月(分别代表春、夏、秋和冬季)对鄱阳湖13个常规监测点表层水体中氧化亚氮(N_2O)浓度进行测定,并选择合适的模型估算其释放量.结果表明,鄱阳湖全年N_2O平均浓度为32.57±17.35 nmol/L,总体处于过饱和状态,平均饱和度为256.83%±129.05%.鄱阳湖N_2O年平均交换通量为0.83±0.69μmol/(m2·h).鄱阳湖水体N_2O季节性释放规律为春季最高,平均交换通量为1.71μmol/(m2·h),其次是夏季和冬季,秋季最低.从空间上来看,春季北部湖区交换通量显著高于南部湖区.相关性分析表明,铵态氮浓度是影响夏季和冬季鄱阳湖水体N_2O产生的主要因素.结合水域面积初步估算出全年释放N_2O约1.29×107mol,其中春季和夏季是鄱阳湖水体N_2O释放的高峰期,总释放量约占全年的80.40%.全年通过N_2O输出氮素约为361.93 t,对鄱阳湖流域内N_2O分布及质量平衡具有一定影响.  相似文献   

5.
巴丹吉林沙漠湖泊季节变化的遥感监测   总被引:6,自引:3,他引:3  
利用2001年12月28日、2002年3月18日、7月24日、9月26日、12月15日五期ETM+遥感影像,提取了巴丹吉林沙漠湖泊年内季节变化信息,并分析了湖泊季节变化的统计特征与空间分布特征.结果显示,巴丹吉林沙漠湖泊总面积和数量随季节更替呈现出明显的统计特征与空间分布特征.湖泊总面积和数量在当年春、夏、秋、冬季均依...  相似文献   

6.
以安徽省升金湖湿地为研究对象,使用1989年、1996年、2003年、2010年和2017年四季Landsat系列遥感数据,构建景观生态风险评价模型,计算不同季节景观生态风险指数,分析风险空间分布及其变化特征,并使用Pearson相关系数分析季节间、季节与年度间景观生态风险相关性.结果显示:(1)不同季节景观生态风险指数有显著差异,生态风险从高到低依次为夏季、冬季、秋季和春季,夏、冬季风险指数平均高出春、秋季37.03%.(2) 1989—2017年升金湖湿地景观生态风险指数明显增加,湖区内泥滩、草滩等重要景观类型极易受人类活动影响,逐渐由中风险、较高风险区转变成较高风险、高风险区,且人造表面与草滩面积与较高风险和高风险区面积呈现出一定的协同变化特征.总体上,升金湖湿地以较低景观生态风险和中景观生态风险为主,较高景观生态风险与高景观生态风险主要位于上、下湖区.(3)季节间景观生态风险相关性最高的为秋季与冬季;年度生态风险与冬季生态风险高度相关.因此,近30年升金湖不同季节湿地景观生态风险时空演变趋势体现了该湿地景观格局变化对景观生态系统干扰的压力响应,且秋季与冬季湖区湿地需引起高度重视.  相似文献   

7.
在气候变化和人类活动的双重影响下,湖泊内部的水动力条件正发生重大的变化,进而影响到湖泊水环境的变化.水龄是颗粒物从入口传输到指定点的时间,可以定量反映水体的运动和交换程度以及滞留情况.如何定量区分人类活动与气候变化对水龄的影响程度,对湖泊水资源科学管理和水环境的治理有着重要的科学意义.本文耦合了深度学习网络和传统二维水动力模型,通过引入基准期概念,定量区分了气候变化和人类活动对鄱阳湖湖区水龄变化的贡献程度.结果表明:(1)本文构建的鄱阳湖流域降雨径流和鄱阳湖湖区二维水动力耦合模型,能够较好地反映鄱阳湖湖区水量交换及流域产流过程,其纳西效率系数分别达到了0.96和0.90以上;(2)鄱阳湖湖区水龄的空间差异显著,东部湖区和南部湖区尾闾水龄平均为228.01 d,而大部分通江水体水龄较小,平均为24.21 d;(3)在气候变化的影响下,鄱阳湖年均有2054 km2的水体水龄呈现减少的趋势,减小幅度为30 d左右,而在人类活动的影响下,在涨水期和丰水期有约58%的湖区水龄呈现上升趋势,而在枯水期和退水期,平均有82%的水体水龄呈现下降趋势.研究结果能够为鄱阳湖水资源管理和水环境治理提供技术支撑,同时也为定量区分人类活动和气候变化对湖泊水动力的影响机制研究提供了一种新思路和视角.  相似文献   

8.
鄱阳湖水利枢纽工程对鄱阳湖水文水动力影响的模拟   总被引:5,自引:4,他引:1  
水流情势变化是河湖生态系统演变最主要的驱动力,拟建的鄱阳湖水利枢纽工程对鄱阳湖水文水动力会产生何种影响是一个值得深入研究的问题.本研究基于EFDC模型构建了鄱阳湖水动力的二维模型,并按照规划中的鄱阳湖水利枢纽工程调度方案,通过丰平枯典型年份的情景模拟,探讨了鄱阳湖水利枢纽工程运行调度方案对湖泊水文水动力的可能影响.模拟结果表明:不同情景年型鄱阳湖水利枢纽工程低枯水位生态调节期(12月1日至3月底4月初)中11 m控制水位对该时期湖泊平均水位的抬升程度明显,2010年(丰水年)11 m控制水位对枯水期湖泊平均水位的最大抬升为2.59 m,2000年(平水年)枯水期湖泊的平均水位最大抬升为2.68 m,而2004年(枯水年)枯水期湖泊的平均水位最大抬升为4.35 m.枯水期水位的抬升,使不同年型不同湖区的枯水期平均流速、最大流速和最小流速都有不同程度的减小,其中以入江河道为最,2000年和2010年枯水期平均流速降幅在44%以上,2004年(枯水年)枯水期的平均降速范围在50%以上,而对两大保护区的影响则较小.对流场格局的影响方面,主要表现在有枢纽时由于低枯水期的11 m水位控制,棠荫以北尤其是入江河道的流场与无枢纽时的流场表现出明显的不同;棠荫以南的湖区,当赣江中支和赣江南支的来水较大时,在棠荫附近及松门山以南的湖区会呈现出较大的水面.同时由于枯水期的水位抬升和流速减小,水利枢纽工程对湖泊换水周期的作用明显,不同年型的换水周期都受到不同程度的影响,2004年枢纽控水过程使控水期间的平均换水周期增加了5.6 d,影响程度达26.1%;模型模拟结果可以揭示在目前调度方案下,水利枢纽工程对鄱阳湖水文水动力的影响程度,为进一步定量分析鄱阳湖水利枢纽工程对湖泊水质和生态系统演化及其可能造成的影响提供必要的基础支撑.  相似文献   

9.
李云良  姚静  张奇 《湖泊科学》2017,29(5):1227-1237
倒灌是发生在湖泊与周围水体交汇处的一个重要物理过程,对湖泊水文水动力与水环境带来严重影响或干扰,进而对湖泊水质产生重要的影响或控制作用.本文采用统计方法和二维水动力-粒子示踪耦合模型来分析倒灌物理成因、倒灌发生判别与指示以及倒灌对鄱阳湖水文水动力的影响.统计表明,流域"五河"入湖径流、长江干流径流情势以及两者叠加作用均是倒灌的影响因素,但长江干流径流情势是影响或者控制倒灌频次与倒灌强度的主要因素."五河"来水与长江干流的流量比可用来判别与指示倒灌发生与否.当流量比低于约5%时,倒灌可能发生且最大发生概率可达25%;当流量比高于10%时,倒灌发生概率则低于2%.水动力模拟结果表明,倒灌对湖区水位与流速的影响向湖区中上游逐渐减弱,湖泊水位和流速受影响最为显著的区域主要分布在贯穿整个湖区的主河道,而浅水洪泛区的水位和流速则受倒灌影响相对较小.倒灌使得湖泊空间水位提高约0.2~1.5 m,湖泊主河道的流速增加幅度可达0.3 m/s.粒子示踪结果表明,倒灌导致湖区水流流向转变约90°~180°,倒灌导致的水流流向变化能够使湖区大部分粒子或物质向上游迁移约几千米至20 km,且粒子在下游主河道的迁移距离要明显大于中上游洪泛区.  相似文献   

10.
鄱阳湖典型洲滩湿地土壤含水量和地下水位年内变化特征   总被引:3,自引:0,他引:3  
湿地植被空间分布受多个水分因子共同影响,为了探求鄱阳湖典型洲滩湿地不同植被类型下地下水、土壤水的变化特征,本文选择鄱阳湖吴城湿地保护区内一个长约1.2 km的典型洲滩湿地为实验区,建立了气象-土壤-水文联合观测系统.对观测的气象、水文要素进行分析发现:(1)洲滩湿地地下水位年内呈单峰变化,季节性差异显著,最大埋深可达10 m,出现在1月份,丰水期8月份地下水位最高时可出露地表,且地下水位与湖泊水位变化具有高度一致性;(2)由远湖区高地至近湖区低地,不同植被带中地下水平均埋深变化为藜蒿带(4.76 m)芦苇带(2.87 m)灰化薹草带(1.61 m).地下水埋深小于50 cm的持续时间分别为:藜蒿带27 d、芦苇带112 d、灰化薹草带170 d;(3)土壤平均含水量沿不同植被带梯度变化为:藜蒿带最小(15.9%),芦苇样带(40.7%)和灰化薹草样带(43.7%)较大.土壤含水量年内变幅为:藜蒿带最大(2.5%~55.2%),芦苇带和灰化薹草带相对较小,分别为22.1%~48.1%和28.4%~54.1%;(4)不同植被带土壤含水量季节变化规律不同,藜蒿带土壤含水量年内呈单峰型,仅夏季土壤含水量较高,其余季节均在10%左右,而芦苇带和灰化薹草样带春、夏、秋季均维持较高含水量(42%以上),仅冬季水分含量较低.  相似文献   

11.
刘慧丽  戴国飞  张伟  廖兵 《湖泊科学》2015,27(2):266-274
鄱阳湖流域内湖库资源众多,柘林湖作为鄱阳湖最大的入湖湖库,是鄱阳湖流域内最大的调节湖库,对鄱阳湖入湖径流有一定的影响,在鄱阳湖的入湖流量中占重要地位.本文以鄱阳湖流域内纳入水质良好湖泊的柘林湖为例,通过对柘林湖的形成及湖泊水系生态环境演变进行探讨,分析近30年来该湖水生生态环境的变化及其关键驱动力因子.综合研究表明:柘林湖水生生物多样性有下降趋势,水质有先变差后改善的趋势,其变化的驱动力主要是流域内人口数量增加、城镇化工业化进程加快、入湖污染负荷逐年增长、滨湖区生态安全屏障受人为破坏以及资源开发不合理等.只有处理好"人湖"和谐、"三次飞跃"和"四大转变",并采取科学合理的措施进行集成研究和综合治理,才能行之有效地改善柘林湖水生生态环境,并发挥其应有的生态效应,从而保障鄱阳湖入湖"一湖清水".  相似文献   

12.
Backflow, the temporary reversal of discharge at the outlet of a lake, is an important mechanism controlling flow and transport in many connected river–lake systems. This study used statistical methods to examine long‐term variations and primary causal factors of backflow from the Yangtze River to a laterally connected, large floodplain lake (Poyang Lake, China). Additionally, the effects of backflow on the lake hydrology were explored using a physically based hydrodynamic model and a particle‐tracking model. Although backflow into Poyang Lake occurs frequently, with an average of 16 backflow events per year, and varies greatly in magnitude between years, statistical analysis indicates that both the frequency and magnitude of backflow reduced significantly during 2001–2010 relative to the previous period of 1960–2000. The ratio of Poyang Lake catchment inflows to Yangtze River discharge can be used as an indication of the daily occurrence of backflow, which is most likely to occur during periods when this ratio is lower than 5%. Statistical analysis also indicates that the Yangtze River discharge is the main controlling factor of backflow during July to October, rather than catchment inflows to the lake. Hydrodynamic modelling reveals that, in general, backflow disturbs the normal northward water flow direction in Poyang Lake and transports mass ~20 km southward into the lake. The effects of backflow on flow direction, water velocities and water levels propagate to virtually its upstream extremity. The current study represents a first attempt to explore backflow and causal factors for a highly dynamic floodplain lake system. An improved understanding of Poyang Lake backflow is critical for guiding future strategies to manage the lake, its water quality and ecosystem value, given proposals to modify the lake–river connectivity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Backflow from the Yangtze River to Poyang Lake occurs frequently due to their different flood seasons. Based on the reasons for and time period of backflow, this study estimated the spatial‐temporal extent and the change of water clarity influenced by sediments within the backflow and northern Poyang Lake using time‐series Moderate Resolution Imaging Spectroradiometer (MODIS) images. The results revealed that the sediments from backflows together with dredging activities in the northern Poyang Lake not only affected the northern Poyang Lake, but also influenced the central and southern Poyang Lake and the Poyang Lake national nature reserve, and resulted in great decline of water clarity in the regions influenced, which could seriously affect the lake ecosystem. The results indicated that MODIS images have potential for monitoring the distribution of sediments from backflows and dredging activities. However, the potential is limited because of the frequent cloud cover in the study area and the characteristics of backflow itself. The dredging activity combined with backflows might have great negative impacts on the Poyang Lake ecosystem, and it would be worthwhile to explore the possible impacts in order to develop scientific knowledge to support the decisions, which need to be made by the responsible authorities for deciding how to rationally manage this unique lake ecosystem Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
受地表河湖系统水情变化干扰,高度动态和异质性的洪泛区地下水文对河湖水资源、水污染以及生态环境功能等方面具有重要影响和贡献。鄱阳湖洪泛区湿地在长江中下游具有重要区位优势和研究特色,但变化环境下其水动力特征和水量交换情况等仍存在许多不确定性。本文以鄱阳湖典型洪泛区为研究区,采用地下水流二维数值模型,开展了洪泛区地表地下水转化作用与水量变化的模拟研究。结果表明,鄱阳湖季节性水位变化很大程度上决定了主湖区与周边地下水之间的动态补排模式,即洪泛区地下水补给湖泊主要发生在枯水和退水时期,而湖泊补给地下水主要发生在涨水和高洪水位时期。一般情况下,整个洪泛区地下水位与湖水位的年内变化态势基本一致,主湖区附近的地下水位年内变幅较大,而大部分洪泛区的地下水位变幅相对较小。北部地下水流速明显大于南部,主湖区附近地下水流速明显大于洪泛区,地下水流速基本小于1~2 m/d。水均衡分析发现,洪泛区地下水系统以接受降雨输入(52%)和主湖区补给(39%)为主,以地下水蒸发输出(72%)和向湖排泄(24%)为主,但补给主要发生在春、夏季,而排泄则发生在秋、冬季。地形地貌对洪泛区地下水位分布以及流速场演化具有主控作用,...  相似文献   

15.
鄱阳湖水利枢纽工程对湖泊水位变化影响的模拟   总被引:14,自引:6,他引:8  
水位变化是影响湖泊水文过程和生态环境的重要因素.本研究基于环境流体动力学(EFDC)模型构建了鄱阳湖水利枢纽工程与主湖区的二维模型,模拟水利枢纽工程运行后对主湖区及湿地保护区水位变化节律的影响.模拟结果表明:水利枢纽工程对湖泊水位的影响由北向南逐渐减小,水利枢纽工程提升了大湖北部水位,使南北水位差减小,将影响鄱阳湖枯水期的流速及自净能力.吴城和南矶湿地自然保护区核心区水位变化受水利枢纽工程的影响较小,吴城自然保护区核心区在水位低于13.8 m时与大湖脱离,不再受水利枢纽工程影响,但水利枢纽工程会影响蚌湖与大湖脱离时间;南矶自然保护区位于鄱阳湖南部,水位受水利枢纽工程影响很小.水利枢纽工程条件下,湖泊水位受人工控制,枯水年和平水年湖泊水位的变化基本一致;枯水年水利枢纽工程对湖泊水位的影响大于平水年,但对湖泊南部的水位变化影响仍然较小.模型模拟结果可以揭示在目前调度方案下,水利枢纽工程对湖泊水位变化节律的影响规律,为工程建设提供一定的理论参考.  相似文献   

16.
定常风对鄱阳湖水动力的影响   总被引:3,自引:3,他引:0  
姚静  张奇  李云良  李梦凡 《湖泊科学》2016,28(1):225-236
鄱阳湖属大风区,风场作为仅次于流域"五河"倾泻和长江顶托作用的另一重要驱动力,或在某些时刻影响局部区域的水流结构,进而影响局部水体中泥沙、污染物、营养盐等物质的输移和扩散.基于鄱阳湖二维水动力数学模型,模拟定常风场条件下的鄱阳湖流场分布及环流形式,并与无风条件下的水流时空结构进行对比.结果表明:3.03 m/s的NE向和SSW向定常风对湖泊水位影响微弱;对流速的影响主要集中在7月中旬至9月底的"湖相"期;其影响区域主要分布在湖区中部大湖面偏西岸及东部湖湾,约占湖泊最大水面积的16%;上述区域出现明显环流,环流结构具有时空异质性特点,环流区流速普遍增至无风时的两倍以上;NE向和SSW向风场产生的环流位置相近,方向相反.相比于以往鄱阳湖水动力研究中对风场的忽略,本次研究揭示了定常风场对鄱阳湖的重点影响区域、影响程度及影响形式,可为泥沙及污染物输移模拟中对风场条件的处理及可能带来的误差与误差的空间分布提供重要依据.  相似文献   

17.
Xianghu Li  Qi Zhang  Qi Hu  Dan Zhang  Xuchun Ye 《水文研究》2017,31(23):4217-4228
The relative timing of peak flows (RTPF) from tributaries has significant influence on flood occurrence at their confluence. This study is aimed at (1) analysing the characteristics of the RTPF of the 5 recharging rivers in the Poyang Lake catchment and the Yangtze River during the period of 1960–2012, and (2) employing a physically‐based hydrodynamic model (MIKE 21) to quantify the effects of RTPF on flood behaviour in the Poyang Lake (the largest freshwater lake in China). The results show that short RTPF, or close occurrence of peak flows, triggers flood in the Poyang Lake more easily. More than 75% of total flood events in the study period occurred with RTPF less than 60 days, and more than 55% of the events occurred with RTPF less than 30 days. The hydrodynamic simulation revealed that the date of flood peak in the lake was postponed by 4–7 days and the flood stage raised by 0.69 m because of the delay of peak flows from the upstream rivers/tributaries. On the other hand, earlier start of the Yangtze River peak flow led to flood peak in the lake 6–13 days earlier. Additionally, the duration of high lake water levels was extended by 9–12 days when the RTPF shortened, and the flood hydrograph of the Poyang Lake changed from a flat to a flashy type. These results indicate that an enlarged RTPF between the upstream rivers and the Yangtze River could be an effective way to prevent flood disasters in the Poyang Lake, a method apparently being adopted in the operation of the Three Gorges Dam. The RTPF should be considered and integrated when developing flood prevention and management plans in the Poyang Lake, as well as in other similar regions in the world.  相似文献   

18.
鄱阳湖泄流能力分析   总被引:1,自引:0,他引:1  
鄱阳湖近年低枯水位频繁发生,引起了人们广泛的关注.鄱阳湖作为吞吐型湖泊,通过狭长的湖口水道与长江自然相通,其水力特性直接影响着长江与鄱阳湖的相互作用关系.基于水力学方法,提出湖泊泄流能力的概念,并采用湖泊水文观测数据,研究了鄱阳湖的泄流能力特征及其近年的演变过程.结果表明,2000s之前鄱阳湖泄流能力基本维持不变,之后迅速提高,近年开始趋于稳定.泄流能力的显著提高改变了鄱阳湖与长江相互作用的水力特性,从而影响了鄱阳湖的水量平衡,加剧了近年枯水情势.研究表明,大规模采砂是鄱阳湖泄流能力变化的主因,应加强鄱阳湖采砂管理.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号