首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new class of ternary semiconductor compounds has been proposed and synthesized. ZnFe2S4 single crystals, which belong to this class, have been grown for the first time; and their structural, electrical, and optical properties have been investigated. The first photosensitive structures have been fabricated, and their photoelectric characteristics have been studied. A conclusion was made that heterostructures and surface-barrier structures based on ZnFe2S4 single crystals are promising for practical applications.  相似文献   

2.
Single crystals of the CdGa2S4 ternary compound were grown either from melt or by chemical-vapor deposition. The crystal-lattice parameters and some physical properties of homogeneous crystals having defect chalcopyrite structure with the point symmetry group \(I\bar 4(S_4^2 )\) are determined. A number of photosensitive structures—Schottky barriers, heterostructures, photoelectrochemical cells, and natural-protein-CdGa2S4 barriers—were formed for the first time on the basis of the single crystals under investigation. The photoelectric properties of the structures obtained were studied using natural and linearly polarized light at T=300 K. The main parameters of these structures are determined, and it is concluded that they can be used in photodetectors.  相似文献   

3.
Photosensitive structures of surface-barrier and homojunction types have been fabricated for the first time on the basis of ZnIn2Se4 single crystals. The spectral dependence of the quantum efficiency of photoconversion has been studied and discussed. It is concluded that the structures are promising for commercial applications.  相似文献   

4.
Photosensitive structures based on single crystals of the ZnIn2S4 ternary compound were fabricated and studied for the first time. The optoelectronic properties of this compound and corresponding structures were analyzed using the results of measurements of the optical-absorption spectra of ZnIn2S4 crystals, steady-state current-voltage characteristics, and photosensitivity of the structures at T=300 K. It is concluded that surface-barrier structures and heterojunctions based on ZnIn2S4 can be used as wide-band photodetectors of natural optical radiation.  相似文献   

5.
In2Se3 single crystals ∼40 mm long and 14 mm in diameter were grown by the Bridgman method. The composition of grown single crystals and their crystal structure were determined. The conductivity (σ) and Hall constant (R) of grown single crystals were measured and the first Schottky barriers Al/n-In2Se3 were fabricated. Rectification and photovoltaic effect were detected in the new structures. Based on the study of the photosensitivity spectra of Al/n-In2Se3 structures, the nature of the interband transitions and band gap of In2Se3 crystals were determined. It was concluded that the new structures can be applied to develop broadband photoconverters of optical radiation.  相似文献   

6.
Heterojunctions based on p-CuIn3Se5 crystals are fabricated by magnetron sputtering of an n-ZnO:Al target and by putting naturally cleaved n-GaSe thin wafers onto polished surfaces of p-CuIn3Se5 wafers. The current-voltage characteristics and mechanisms of current flow in the diodes under study are analyzed. The photovoltaic effect revealed in the fabricated structures is discussed. It is shown that the fabricated photosensitive heterojunctions are promising for the development of selective analyzers of linearly polarized radiation.  相似文献   

7.
Photosensitive structures based on n-HgGa2S4 single crystals were prepared and investigated. It was concluded that HgGa2S4 crystals are promising for the fabrication of photodetectors of natural and linearly polarized light in the short-wavelength spectral region.  相似文献   

8.
Thin-film n-ZnO:Al/p-Cu(In,Ga)Se2 heterojunctions are fabricated by magnetron sputtering of an ZnO target, leading to a deposition of Cu(In,Ga)Se2 films on the surface. The photoelectric properties of the fabricated heterojunctions are studied under exposure to natural and linearly polarized light. It is concluded that the resulting cadmium-free environmentally safe heterostructures can be used as high-efficiency broad-band photoconverters of natural and linearly polarized light.  相似文献   

9.
Using the method of planar crystallization from the melt with deviations from the stoichiometric composition, p-CuIn3Se5 single crystals are grown. The electrical properties of the homogeneous crystals are studied. It is found that the resistivity of the p-CuIn3Se5 crystals depends on the excess Se content in the melt. It is established that the voltaic photosensitivity of the In/CuIn3Se5 structures is enhanced with an increasing excess of Se content in the melt. The energy spectrum and the character of interband transitions in the CuIn3Se5 crystals are discussed. It is concluded that the CuIn3Se5 ternary compound can be used in high efficiency photoelectric converters of solar radiation.  相似文献   

10.
The method of heat treatment of metallic Cu-In-Ga layers in the N2 inert atmosphere in the presence of selenium and sulfur vapors was used to grow homogeneous films of Cu(In,Ga)(S,Se)2 alloys onto which the CdS or In2S3 films were deposited and, on the basis of these structures, the thin-film glass/Mo/p-Cu(In,Ga) (S,Se)2/n-(In2S3,CdS)/n-ZnO/Ni-Al photoelements were fabricated. The mechanisms of charge transport and the processes of photosensitivity in the obtained structures subjected to irradiation with natural and linearly polarized light are discussed. The broadband photosensitivity of thin-film heterophotoelements and the induced photopleochroism were detected; these findings indicate that there is an interference-related blooming of the structures obtained. It is concluded that it is possible to use ecologically safe cadmium-free thin-film heterostructures as high-efficiency photoconverters of solar radiation.  相似文献   

11.
Crystals of the compound In2S3 were grown by planar crystallization of the melt. The composition, structure, and electrical characteristics of the crystals obtained were determined. Photosensitive structures based on the grown In2S3 crystals were fabricated for the first time; spectral dependences of photoconversion quantum efficiency for H2O/In2S3 cells were measured. The features of the band-to-band absorption are discussed; energies of the direct and indirect optical transitions for In2S3 crystals are estimated. It is stated that In2S3 crystals can be used in wide-range (1.5–3.5 eV) photoconverters of nonpolarized radiation (in particular, in solar cells).  相似文献   

12.
The method of gas-phase resublimation is used to grow the single-crystals of monoclinic and tetragonal modifications whose composition are identical and corresponds to the ZnP2 stoichiometry. The crystal-lattice parameters are determined and natural facets of the crystals of both modifications are identified. The obtained single crystals were used to fabricate for the first time the Schottky barriers and welded point structures; the latter exhibited rectification and the photovoltaic effect. On the basis of the first studies of photosensitivity of obtained structures subjected to the natural and linearly polarized radiation, the character of interband transitions is suggested, the values of the band gap are determined, and the influence of the position ordering of atoms on the structures’ properties is observed. The phenomenon of natural photopleochroism observed in the structures based on oriented ZnP2 single crystals were studied. It is concluded that it is possible to use the zinc diphosphide in photoconversion of the intensity and polarization of optical radiation.  相似文献   

13.
A new ternary compound is synthesized for the first time, and bulk CuIn5Te8 single crystals are grown by directed crystallization of near-stoichiometric melt. It is established from X-ray diffraction patterns of grown crystals that they exhibit the structure of imperfect chalcopyrite with parameters of the unit cell of CuIn5Te8, which were close to those known for the CuInTe2 ternary compound with the composition index n = 0. First, photosensitive structures are fabricated based on CuIn5Te8 crystals, and photosensitivity spectra are obtained for them; it is shown that it is possible to achieve broadband photosensitivity under illumination of the barrier side of these crystals. From the analysis of photosensitivity spectra, the character of band-to-band transitions and corresponding energies of these transitions in CuIn5Te8 are determined. This opens up prospects to use this new semiconductor in photoconverters of solar radiation.  相似文献   

14.
Single crystals of the CdV2S4 ternary compound are grown, and their crystal structure, electrical properties, and optical absorption are studied. The substitution of vanadium for Group III element in AIIB 2 III C 4 VI compounds results in the formation of crystals of n-type conduction with an electron density of ~1018 cm?3 and a Hall mobility Un≈150 cm2/(V s) at T=300 K, which is limited by scattering on lattice vibrations. Rectifying photosensitive structures based on CdV2S4 single crystals are fabricated for the first time, their photoelectric properties are studied, and a conclusion is made on their applicability in the design of wide-spectral-range photodetectors of unpolarized light.  相似文献   

15.
The authors describe a gas-transport reaction method they recently developed using the compounds NH4Cl (Br, I) as transport agents. Using this method, they were able to grow semiinsulating cadmium telluride single crystals with carrier concentrations p=108–1010 cm−3 at T=300 K. These crystals were used to fabricate In-CdTe surface-barrier structures with peak voltaic photosensitivities of ∼105 V/W. Their investigations of the emission properties of homogeneous crystals at T=77K and distinctive features of their photosensitivity spectra revealed that these material characteristics derive from the use of Cl, Br, and I as dopants. By illuminating their In-CdTe structures with linearly polarized light at oblique incidence, they generated induced photopleochroism, which was measured and used to determine the refraction index of the material, which is found to be n=2.8. The paper concludes with a discussion of how these structures can be used as photodetectors of natural and linearly polarized light. Fiz. Tekh. Poluprovodn. 33, 553–558 (May 1999)  相似文献   

16.
The hexagonal modification of In2Se3 single crystal is grown by planar crystallization from nearly stoichiometric melt and by the vapor-phase method. For the first time, the Schottky barriers In/n-In2Se3, which are photosensitive in a wide incident-photon energy range of 1–3.8 eV at 300 K, are obtained. The nature of the interband photoactive absorption is studied. The energy-barrier height and interband optical-transition energy are estimated. It is concluded that the grown crystals can be used in broadband optical-radiation converters.  相似文献   

17.
Mn0.1Ag0.9In4.7S7.6 single crystals are for the first time grown by the Bridgman method (vertical variant). The single crystals crystallize in the cubic spinel structure. The band gap of the single crystals is determined from the transmittance spectra in the region of the fundamental absorption edge at temperatures of T = 295 and 80 K. Thermal expansion is studied by the dilatometric method in the temperature range 80–500 K. The coefficients of thermal expansion, the Debye temperatures, and the rms (root mean square) dynamic displacements of atoms are calculated.  相似文献   

18.
In this work, Bi2Te3-Sb2Te3 superlattices were prepared by the nanoalloying approach. Very thin layers of Bi, Sb, and Te were deposited on cold substrates, rebuilding the crystal structure of V2VI3 compounds. Nanoalloyed super- lattices consisting of alternating Bi2Te3 and Sb2Te3 layers were grown with a thickness of 9 nm for the individual layers. The as-grown layers were annealed under different conditions to optimize the thermoelectric parameters. The obtained layers were investigated in their as-grown and annealed states using x-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive x-ray (EDX) spectroscopy, transmission electron microscopy (TEM), and electrical measurements. A lower limit of the elemental layer thickness was found to have c-orientation. Pure nanoalloyed Sb2Te3 layers were p-type as expected; however, it was impossible to synthesize p-type Bi2Te3 layers. Hence the Bi2Te3-Sb2Te3 superlattices consisting of alternating n- and p-type layers showed poor thermoelectric properties.  相似文献   

19.
In2Se3 films are produced by ion-beam evaporation at substrate temperatures of 313 and 623 K. As the target, In2Se3 single crystals grown by the vertical Bridgman method are used. The composition and structure of the crystals and films are determined by the X-ray spectral analysis and X-ray diffraction techniques, respectively. It is established that the crystals and films crystallize with the formation of a hexagonal structure. The band gap and refractive index of the In2Se3 films are determined from the transmittance and reflectance spectra. It is found that, as the substrate temperature is increased, the band gap increases.  相似文献   

20.
The temperature dependences (T = 5−300 K) of the resistivity in the plane of layers and in the direction perpendicular to the layers, as well as the Hall effect and the magnetoresistance (H < 80 kOe, T = 0.5−4.2 K) in Bi2Te3 single crystals doped with chlorine and terbium, are investigated. It is shown that the doping of Bi2Te3 with terbium atoms results in p-type conductivity and in increasing hole concentration. The doping of Bi2Te3 with chlorine atoms modifies also the character of its conductivity instead of changing only the type from p to n. In the temperature dependence of the resistivity in the direction perpendicular to layers, a portion arises with the activation conductivity caused by the hopping between localized states. The charge-transport mechanism in Bi2Te3 single crystals doped with chlorine is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号