首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xiang J  Chen Z  Huang H  Moyana T 《Leukemia research》2001,25(10):909-915
IL-18 is a novel cytokine that stimulates T and NK cell activity and has potent antitumor effects. In this study, a mouse IL-18 gene was transfected into the mouse myeloma cell line J558. Our data demonstrated that (i) inoculation of 0.5x10(6) engineered tumor cells J558/IL-18 into syngeneic mice induced a Th1 dominant immune response and resulted in tumor regression in all 8/8 mice; (ii) the IL-18 antitumor effect was significantly decreased in mice depleted of either the CD4(+), or CD8(+), or NK cell subset, respectively but was completely abrogated in mice depleted of both CD4(+) and CD8(+) T cells; (iii) in vivo neutralization of IFN-gamma was accompanied by the growth of J558/IL-18 tumor in all the mice; and (iv) the J558/IL-18 tumor regression further induced protective immunity against a subsequent challenge by the parental J558 tumor, which is mediated by CD8(+) T cells as examined in the cytotoxicity assay in vitro and in the animal study in vivo. Taken together, our findings indicate that: (i) IL-18 can induce antitumor immune responses mediated by both CD4(+)/CD8(+) T cells and NK cells; and (ii) it is associated with IFN-gamma production. This study thus highlights the potential utility of IL-18 as an antitumor agent, a role that it can fulfil alone or in combination with other immunomodulatory cytokines such as IL-12.  相似文献   

2.
The T-helper 1 (Th1) immune reaction is most important in dendritic cell (DC)-based immunotherapy. Interleukin 12 (IL-12) and granulocyte macrophage colony-stimulating factor (GM-CSF) play a pivotal role in inducing Th1 and cytotoxic T lymphocyte (CTL) responses. In this study, DCs expressing the natural tumor antigen gp70 of BALB/c-derived CT26 were adenovirally transduced with the IL-12 gene and/or GM-CSF gene, and it was examined whether vaccinations using these genetically engineered DCs can induce strong therapeutic antitumor immunity. Mice were immunized once by subcutaneous (s.c.) injection with genetically modified DCs. The cytotoxic activity of splenocytes against CT26 was assayed in a 51Cr-release assay 14 days after immunization. The therapeutic efficacy of the vaccination was examined in s.c. tumor models. The cytotoxic activity of CTLs against CT26 in mice immunized with DCs expressing gp70 (DC-AxCAgp70) was significantly augmented by co-transduction with the GM-CSF/IL-12 gene (p<0.0001) and remarkably reduced by the depletion of CD4+ or CD8+ cells (p<0.01). The cytotoxic activity against CT26 of the plain spleen cells in mice immunized with DC-AxCAgp70/GM-CSF/IL-12 was significantly higher than that in mice immunized with DC-AxCAgp70 (p<0.0001), and this activity decreased to almost 50% upon the depletion of NK cells. Vaccinations using DC-AxCAgp70/GM-CSF/IL-12 or DC-AxCAgp70/IL-12 could elicit potent therapeutic immunity in s.c. tumor models; tumor-free mice were observed in these vaccination groups. However, there was no significant difference between these two groups. A vaccination therapy using DCs co-transduced with the TAA gene and Th 1-type cytokine genes, especially the IL-12 gene, is ideal for immunotherapy in terms of the activation of DCs, NK cells, CD4+ T cells and CD8+ T cells, and may be useful in the clinical application of a cancer vaccine therapy.  相似文献   

3.
The cytokine interleukin-12 (IL-12) has shown potent antitumor activity in several tumor models. Recently, natural killer (NK) T cells have been proposed to mediate the antitumor effects of IL-12. In this study, the antitumor response of IL-12 was investigated in a gene therapeutic model against s.c. growing mouse hepatocellular carcinomas using an adenoviral vector expressing murine IL-12 (AdVmIL-12). An adenoviral-based system was chosen because of the ability of adenoviruses to transduce dividing and nondividing cells and because of their high transduction efficiencies. Our goals were to examine the efficacy of AdVmIL-12 in a hepatocellular carcinoma model and to investigate the mechanism of the AdVmIL-12-mediated antitumor response with specific interest in the role of NK T cells. Our studies demonstrate that intratumoral AdVmIL-12-mediated regression of s.c. hepatocellular tumors is associated with rapid antitumor responses. AdVmIL-12 treatment was associated with an immune cellular infiltrate consisting of CD4 and CD8 T lymphocytes, macrophages, NK cells, and NK T cells. Antibody ablation of CD4 and CD8 T cells and use of NK cell-defective beige mice failed to abrogate the response to AdVmIL-12. Studies in T-cell- and B-cell-deficient severe combined immunodeficient and recombinase activating gene-2-deficient mice and T-cell-, B-cell-, and NK cell-defective severe combined immunodeficient/beige mice also failed to abrogate this response. AdVmIL-12 retained potent antitumor activity in mice with specific genetic defects in immune cellular cytotoxicity (perforin knockout mice) and costimulation (CD28 knockout mice). Use of mice with specific NK T cell deficiencies, Valpha14 T-cell receptor and CD1 knockout mice, also failed to abrogate the response to AdVmIL-12. Histological and immunohistochemical studies of AdVmIL-12-treated tumors showed extensive inhibition of neovascularization and a marked decrease in factor VIII-stained endothelial cells. Our studies indicate that the antitumor response of AdVmIL-12 is independent of direct cytotoxic cellular immunity (specifically, the function of NK T cells) and suggest that the initial mechanisms of AdVmIL-12-mediated tumor regression involve inhibition of angiogenesis.  相似文献   

4.
Tumor necrosis factor-alpha (TNF-alpha) and interleukin 12 (IL-12), both potent antitumor cytokines, are known to be involved in the host's antitumor immune surveillance in tumor bearers, via different mechanisms. The former enhances the activities of dendritic cells, natural killer / lymphocyte-activated killer (NK / LAK) and cytotoxic T lymphocyte (CTL), while the latter induces Th1-type cellular immunity and enhances the activities of natural killer T (NKT), NK / LAK and CTL. In the present study, in the expectation of synergistic actions of these cytokines in stimulating the host's immune responses, we investigated the feasibility of a cancer vaccine involving double transfection with both genes in a murine model. The expression of major histocompatibility complex (MHC) class I, class II and B7.1 on the surface of the double transfectants was enhanced as revealed by FACS analysis. A significant decrease in tumorigenicity was observed in mice inoculated with the double transfectants. Cytotoxicity assay revealed that the activities of NK / LAK and CTL from spleens of mice bearing the double transfectants were enhanced. The induction of tumor-specific immunity was confirmed by rechallenge with parental Meth-A cells in mice that had rejected the double transfectants. Thus, double transfection of TNF-alpha and IL-12 genes was considered to bring about synergistic suppressive effects on the tumorigenicity of transfectants through the activation of killer cells by produced cytokines and the enhancement of expression of MHC class I, II and B7.1 molecules.  相似文献   

5.
Dendritic cells (DCs) display an extraordinary capacity to induce T‐cell responses providing the opportunity of DC‐based cancer vaccination strategies. Additional findings indicate that DCs may also play a crucial role for the activation of natural killer (NK) cells, which are important effectors in innate antitumor immunity. However, studies investigating the interaction between native human DCs and NK cells are limited. Recently, we defined 6‐sulfo LacNAc (slan) DCs as a major subpopulation of myeloid human blood DCs, which represent principal producers of the proinflammatory cytokines tumor necrosis factor‐α and interleukin (IL)‐12. Functional data revealed that slanDCs efficiently induce neoantigen‐specific CD4+ T cells and activate tumor‐reactive cytotoxic T cells. When evaluating the crosstalk between slanDCs and NK cells in this study, we found that lipopolysaccharide (LPS)‐activated slanDCs efficiently enhance NK cell CD69 expression and interferon (IFN)‐γ secretion. NK cell‐mediated tumor‐directed cytotoxicity was significantly improved by slanDCs. NK cell activation induced by slanDCs was critically dependent on IL‐12. When investigating the impact of NK cells on the immunostimulatory capacity of slanDCs, we observed that they promote DC maturation. In addition, NK cells strongly enhanced the secretion of immunomodulatory IL‐12 and reduced the release of immunosuppressive IL‐10 by slanDCs. IFN‐γ and cell‐to‐cell contact contributed to these effects. Furthermore, data revealed that DC‐NK cell crosstalk improves slanDC‐mediated differentiation of naïve CD4+ T lymphocytes into IFN‐γ‐producing Th1 cells. In conclusion, we demonstrate a reciprocal activating interaction between slanDCs and NK cells, which may play a pivotal role in the regulation of antitumor immunity. © 2008 Wiley‐Liss, Inc.  相似文献   

6.
Cancer immunotherapy by fusion of antigen-presenting cells and tumor cells has been shown to induce potent antitumor immunity. In this study, we characterized syngeneic and allogeneic, murine macrophage/dendritic cell (DC)-cancer fusion cells for the antitumor effects. The results showed the superiority of allogeneic cells as fusion partners in both types of antigen-presenting cells in an in vivo immunotherapy model. A potent induction of tumor-specific CTLs was observed in these immunized conditions. In addition, the immunization with DC-cancer fusion cells was better than that with macrophage-cancer fusion cells. Both syngeneic and allogeneic DC-cancer fusion cells induced higher levels of IFN-gamma production than macrophage-cancer fusion cells. Interestingly, allogeneic DC-cancer fusion cells were superior in that they efficiently induced Th1-type cytokines but not the Th2-type cytokines interleukin (IL)-10 and IL-4, whereas syngeneic DC-cancer fusion cells were powerful inducers of both Th1 and Th2 cytokines. These results suggest that allogeneic DCs are suitable as fusion cells in cancer immunotherapy. To further enhance the antitumor immunity in the clinical setting, we prepared DCs fused with IL-12 gene-transferred cancer cells and thus generated IL-12-secreting DC-cancer fusion cells. Immunization with these gene-modified DC-cancer fusion cells was able to elicit a markedly enhanced antitumor effect in the in vivo therapeutic model. This novel IL-12-producing fusion cell vaccine might be one promising intervention for future cancer immunotherapy.  相似文献   

7.
Most of the current tumor vaccines successfully elicit strong protection against tumor but offer little therapeutic effect against existing tumors, highlighting the need for a more effective vaccine strategy. Vaccination with tumor antigen-presenting cells can induce antitumor immune responses. We have previously shown that NKT-licensed B cells prime cytotoxic T lymphocytes (CTLs) with epitope peptide and generate prophylactic/therapeutic antitumor effects. To extend our B cell vaccine approach to the whole antigen, and to overcome the MHC restriction, we used a nonreplicating adenovirus to transduce B cells with antigenic gene. Primary B cells transduced with an adenovirus-encoding truncated Her-2/neu (AdHM) efficiently expressed Her-2/neu. Compared with the moderate antitumor activity induced by vaccination with adenovirus-transduced B cells (B/AdHM), vaccination with alpha-galactosylceramide-loaded B/AdHM (B/AdHM/alpha GalCer) induced significantly stronger antitumor immunity, especially in the tumor-bearing mice. The depletion study showed that CD4(+), CD8(+) and NK cells were all necessary for the therapeutic immunity. Confirming the results of the depletion study, B/AdHM/alpha GalCer vaccination induced cytotoxic NK cell responses but B/AdHM did not. Vaccination with B/AdHM/alpha GalCer generated Her-2/neu-specific antibodies more efficiently than B/AdHM immunization. More importantly, B/AdHM/alpha GalCer could prime Her-2/neu-specific cytotoxic T cells more efficiently and durably than B/AdHM. CD4(+) cells appeared to be necessary for the induction of antibody and CTL responses. Our results demonstrate that, with the help of NKT cells, antigen-transduced B cells efficiently induce innate immunity as well as a wide range of adaptive immunity against the tumor, suggesting that they could be used to develop a novel cellular vaccine.  相似文献   

8.
Dendritic cell (DC)-tumor fusion hybrid vaccines that facilitate antigen presentation represent a novel powerful strategy in cancer immunotherapy. In our study, we investigated the antitumor immunity derived from the vaccination of fusion hybrids between engineered J558/IL-18 myeloma cells secreting Th1 cytokine IL-18 and DCs. DC/J558/IL-18 could secret a higher level of IL-18 than DCs, efficiently expressed J558 tumor antigen P1A, and enhanced ability of allogeneic T cell stimulation when compared to J558/IL-18. Our data showed that the immunization of BALB/c mice with DC/J558/IL-18 hybrids induced the most potent protective immunity against 1 x 10(6) cells with a J558 tumor challenge, compared to those immunized with the mixture of DCs and J558/IL-18, J558/IL-18, or J558. Furthermore, the immunization of mice with engineered DC/J558/IL-18 hybrids elicited stronger NK activity and J558 tumor-specific cytotoxic T lymphocyte (CTL) responses in vitro. In addition, DC/J558/IL-18 tumor cells into syngeneic mice induced a Th1 dominant immune response to J558 and resulted in tumor regression, which indicated that the antitumor effect mediated by DC/J558/IL-18 appeared to be dependent on TH1 cytokine production. These results demonstrate that the engineered fusion hybrid vaccines that combine Th1 gene-modified tumor with DCs may be an attractive strategy for cancer immunotherapy.  相似文献   

9.
Tumor necrosis factor-α(TNF-α) and interleukin 12 (IL-12), both potent antitumor cytokines, are known to be involved in the host's antitumor immune surveillance in tumor bearers, via different mechanisms. The former enhances the activities of dendritic cells, natural killer/lymphocyteactivated killer (NK/LAK) and cytotoxic T lymphocyte (CTL), while the latter induces Th1-type cellular immunity and enhances the activities of natural killer T (NKT), NK/LAK and CTL. In the present study, in the expectation of synergistic actions of these cytokines in stimulating the host's immune responses, we investigated the feasibility of a cancer vaccine involving double transfection with both genes in a murine model. The expression of major histocompatibility complex (MHC) class I, class II and B7.1 on the surface of the double transfectants was enhanced as revealed by FACS analysis. A significant decrease in tumorigenicity was observed in mice inoculated with the double transfectants. Cytotoxicity assay revealed that the activities of NK/LAK and CTL from spleens of mice bearing the double transfectants were enhanced. The induction of tumor-specific immunity was confirmed by rechallenge with parental Meth-A cells in mice that had rejected the double transfectants. Thus, double transfection of TNF-α and IL-12 genes was considered to bring about synergistic suppressive effects on the tumorigenicity of transfectants through the activation of killer cells by produced cytokines and the enhancement of expression of MHC class I, II and B7.1 molecules.  相似文献   

10.
The critical role of Th1-dominant immunity in tumor immunology   总被引:11,自引:0,他引:11  
To investigate the precise role of antigen-specific Th1 and Th2 cells in tumor immunity, we developed a novel adoptive tumor-immunotherapy model using OVA-specific Th1 and Th2 cells and an OVA gene-transfected tumor. This therapeutic model demonstrated that both antigen-specific Th1 and Th2 cells had strong antitumor activity in vivo with distinct mechanisms. However, immunological memory suitable for the generation of tumor-specific cytotoxic T lymphocytes was induced only when tumor-bearing mice received Th1 cell therapy, but not Th2 cell therapy. Thus it was strongly suggested that Th1-dominant immunity is critically important for the induction of antitumor cellular immunity in vivo. We also proposed that several immunomodulating protocols using interleukin (IL)-12, IL-12 gene, the natural killer T cell ligand !-galactosylceramide, or Th1 cytokine-conditioned dendritic cells might be useful strategies for the induction of Th1-dominant immunity essential for the development of tumor-specific immunotherapy.  相似文献   

11.
Interleukin 2 (IL-2) expressing plasmid and interleukin 6 (IL-6)-expressing plasmid were encapsulated in liposome and administrated intratumoraly into tumor-bearing mice 4 days after subcutaneous inoculation of B16F10 melanoma cells. The results showed that treatment of tumor-bearing mice with IL-2 gene or IL-6 gene transfer inhibited the growth of subcutaneous tumor and prolonged the survival of tumor-bearing mice significantly when compared with the treatment of PBS or control gene transfer mediated by liposome (P < 0.01). Combined transfer of IL-2 gene and IL-6 gene was found to elicit inhibitory effects on the growth of B16F10 tumor more significantly and prolonged the survival period of tumor-bearing mice more obviously. We investigated the local immunity in tumor microenvironment and found that IL-2 and IL-6 gene transfer could significantly increase the expression of lymphocyte function-associated antigen-1 on tumor infiltrating lymphocytes (TIL) and MHC-I molecule on tumor cells freshly isolated from the tumor mass. The NK and CTL activity of TIL increased markedly after the combined transfer of these two cytokine genes. We also observed the systemic antitumor immune response in the tumor-bearing mice and demonstrated that NK and CTL activity of splenocytes and the production of IL-2, tumor necrosis factor and interferon-gamma from splenocytes increased obviously in mice after the combined transfer of IL-2 and IL-6 gene. In conclusion, local and systemic antitumor immunity of the tumor-bearing host could be induced efficiently after the combined gene transfer. The enhanced specific and non-specific antitumor immunity might be responsible for the more potent antitumor effects of the combined gene therapy.  相似文献   

12.
Fractalkine (FK, also called neurotactin or CX3CL1) is a CX3C chemokine that can chemoattract T lymphocytes, monocytes and NK cells. In our study, we investigated the induction of antitumor response by FK gene transfer. FK gene-modified 3LL lung carcinoma cells (3LL-FK) could both secrete soluble form and express membrane-bound form of FK. The tumor growth of 3LL-FK was decreased. Vaccination with 3LL-FK was effective in the induction of protective immunity and CTL. In vivo depletion analysis demonstrated that CD8(+) T cells are the main participating cells of the antitumor response. Obvious infiltrations of CD8(+) T cells, CD4(+) T cells and dendritic cells (DC) were observed in the tumor sites, suggesting that 3LL-FK might induce antitumor immunity through chemoattraction and activation of T cells and DC. Then we investigated the chemoattraction and activation of DC by 3LL-FK. Chemotaxis assay showed that the supernatants of 3LL-FK could chemoattract immature DC, which were found to express FK receptor CX3CR1, and the immature DC could obviously adhere to 3LL-FK. Adherence of DC to 3LL-FK resulted in phenotypic maturation and upregulated IL-12 secretion of DC, and more strong stimulation of allogeneic T-cell proliferation by DC. The increased production of IL-2 and IFNgamma in 3LL-FK tumor tissue was also observed. Our data suggested that FK gene transfer to tumor cells could induce T-cell-dependent antitumor immunity through chemoattraction and activation of DC.  相似文献   

13.
Yuan X  Hu J  Belladonna ML  Black KL  Yu JS 《Cancer research》2006,66(5):2630-2638
Neural progenitor-like cells have been isolated from bone marrow and the cells have the ability of tracking intracranial tumor. However, the capacity of the cells to deliver molecules for activating immune response against intracranial tumor and the identity of cellular and molecular factors that are involved in such immune responses have yet to be elucidated. Here, we isolated neural stem-like cells from the bone marrow of adult mice. The isolated cells were capable of producing progenies of three lineages, neurons, astrocytes, and oligodendrocytes, in vitro and tracking glioma in vivo. By genetically manipulating bone marrow-derived neural stem-like cells (BM-NSC) to express a recently discovered cytokine, interleukin (IL)-23, the cells showed protective effects in intracranial tumor-bearing C57BL/6 mice. Depletion of subpopulation lymphocytes showed that CD8(+) T cells were critical for the antitumor immunity of IL-23-expressing BM-NSCs and that CD4(+) T cells and natural killer (NK) cells participated in the activity. Furthermore, the IL-23-expressing BM-NSC-treated survivors were resistant to the same tumor rechallenge associated with enhanced IFN-gamma, but not IL-17, expression in the brain tissue. Taken together, these data suggest that IL-23-expressing BM-NSCs can effectively induce antitumor immunity against intracranial gliomas. CD8(+) T cells are critical for such antitumor activity; in addition, CD4(+) T cells and NK cells are also involved.  相似文献   

14.
In murine tumors, innate immunity act as a trigger for the development of acquired immunity. The innate immune cells, natural killer (NK) and natural T (NKT) cells, generate the acquired immune cells, cytotoxic T lymphocytes (CTLs) and T helper (Th) 1 cells, by releasing interferon (IFN)-gamma. Regulatory T cells co-infiltrate with these tumoricidal effectors. In the innate phase, T cell receptor (TCR) gammadelta-bearing T (gammadelta T) and TCRalphabeta intermediate T cells are the regulators that suppress NK and NKT cells by elaborating interleukin (IL)-4, IL-10 and transforming growth factor (TGF)-beta. The acquired phase has Th3/T regulatory 1-like cells that inhibit CTLs and Th1 cells by TGF-beta. Thus, cytokines from regulatory T cells exert profound effects on tumor growth.  相似文献   

15.
Statins are inhibitors of cholesterol biosynthesis and protein prenylation that also have been studied in cancer therapy and chemoprevention. With regard to natural killer (NK) cells, only inhibitory effects of statins such as suppression of granule exocytosis have been reported so far. In this study, we show that statins can cooperate with IL-2 to potently induce the activation of CD56(dim) NK cells in a synergistic, time- and dose-dependent fashion. Supplementation experiments revealed that the statin effect was specific to inhibition of their target hydroxymethylglutaryl coenzyme A reductase and that downstream depletion of geranylgeranyl pyrophosphate was responsible for cooperating with IL-2 in NK cell activation. Mechanistic studies revealed that CD56(+)HLA-DR(+)CD14(+) dendritic cell (DC)-like accessory cells mediated the ability of statin to activate NK cells. In contrast, BDCA-1(+) (CD1c(+)) myeloid DCs, which partially expressed CD56, were somewhat less potent. Conventional blood monocytes, which lack CD56, exhibited the lowest accessory cell capacity. NK cell IFN-γ production was IL-12 independent but required endogenous IL-18, IL-1β, and caspase-1 activity. Statins directly induced apoptosis in human cancer cell lines and cooperated with NK cell-derived IFN-γ to generate potent cytotoxic antitumor effects in vitro even in the presence of statin-mediated inhibitory effects on granule exocytosis. Our work reveals novel and unexpected immunomodulatory properties of statins, which might be harnessed for the treatment of cancer.  相似文献   

16.
Shi M  Su L  Hao S  Guo X  Xiang J 《Tumori》2005,91(6):531-538
AIMS AND BACKGROUND: Dendritic cell (DC)-tumor fusion hybrid vaccinees that facilitate antigen presentation represent a novel powerful strategy in cancer immunotherapy. Preclinical studies have demonstrated that IL-12 promotes specific antitumor immunity mediated by T cells in several types of tumors. In the present study, we investigated the antitumor immunity derived from vaccination of fusion hybrids between DCs and engineered J558/IL-12 myeloma cells secreting Th1 cytokine IL-12. METHODS: The expression vector pcDNA-IL-12 was generated and transfected into J558 myeloma cells and then bone marrow-derived DCs were fused with engineered J558/IL-12 cells. The antitumor immunity derived from vaccination of the fusion hybrid DC/J558/IL-12 was evaluated in vitro and in vivo. RESULTS: DC/J558/IL-12 cells secreted recombinant IL-12 (1.6 ng/mL), and inoculation of BALB/c mice with DC/J558/IL-12 hybrid induced a Th1 dominant immune response and resulted in tumor regression. Immunization of mice with engineered DC/J558/IL-12 hybrid elicited stronger J558 tumor-specific cytotoxic T lymphocyte (CTL) responses in vitro as well as more potent protective immunity against J558 tumor challenge in vivo than immunization with the mixture of DCs and J558/IL-12, J558/IL-12 and J558, respectively. Furthermore, the anti-tumor immunity mediated by DC/J558/IL-12 tumor cell vaccination in vivo appeared to be dependent on CD8+ CTL. CONCLUSIONS: These results demonstrate that the engineered fusion hybrid vaccines that combine Th1 cytokine gene-modified tumor cells with DCs may be an attractive strategy for cancer immunotherapy.  相似文献   

17.
Hepatocyte growth factor (HGF) has been shown to be involved in malignant behaviors, such as invasion and metastasis, in different tumors. Hence, HGF could be a target molecule for control of the malignant potential of cancer. NK4 is a competitive antagonist for HGF and exerts an antitumor activity, not only by HGF antagonism but also by antiangiogenesis. Here, we studied the participation of cellular immunity in CT26 tumor regression by NK4 gene transfer. In vivo experiments showed that NK4‐induced inhibition of subcutaneous tumor growth (as demonstrated in immunocompetent BALB/c mice) was weakened in T lymphocyte‐deficient nude mice. In addition, the immunocompetent BALB/c mice that had shown complete regression of CT26‐NK4 tumors generated an immune memory against repeated challenge with the same tumor antigen. Immunohistochemistry of tumor‐infiltrating lymphocytes showed that the ratio of CD8/CD4 in CT26‐NK4 tumors was significantly higher than that in control tumors. Also, the presence of tumor‐specific cytotoxic T lymphocytes (CTL) was demonstrated by cytotoxicity assays. Depletion of CD8+ T lymphocytes markedly abrogated the antitumor activity of NK4. However, NK4 had no direct effect on the in vitro cellular immune system. Taken together, these data indicate that NK4 expression by gene transfer, at the tumor site, triggers tumor‐specific CTL activation, resulting in complete CT26 tumor regression in vivo. This action was considered to be due to apoptosis induced by NK4's potent antiangiogenic and HGF antagonistic effects. © 2009 UICC  相似文献   

18.
BACKGROUND: The success of immunomodulatory cancer therapy is frequently hampered by the transient nature of the antitumor immune response. We have shown previously in a mouse model that interleukin 12 (IL-12) generates a strong natural killer (NK) cell-mediated antitumor response and reduces liver metastases induced by a colon carcinoma cell line. However, only a small percentage of the treated animals developed the cytotoxic T-lymphocytic response required for a long-term systemic antitumor immunity. 4-1BB is a co-stimulatory molecule expressed on the surface of activated T cells. Interaction of 4-1BB with its natural ligand (4-1BBL) has been shown to amplify T-cell (especially CD8+)-mediated immunity. In this study, we investigated the effects of adenovirus-mediated gene therapy delivering both IL-12 and 4-1BBL genes on mice with hepatic metastases induced by colon cancer cells. METHODS: Syngeneic BALB/c mice received intrahepatic injection of poorly immunogenic MCA26 colon cancer cells. Various combinations of replication-defective adenoviruses expressing IL-12 and 4-1BBL genes were injected into the established liver tumors. Changes in tumor size and animal survival were then monitored. All statistical tests were two-sided. RESULTS: The long-term survival rate of mice treated with the combination of IL-12 and 4-1BBL was significantly improved over that of animals in the control group (P =.0001). In vivo depletion of NK cells or CD8+ T cells completely abolished the long-term survival advantage of the IL-12 plus 4-1BBL-treated animals (P<.002). Moreover, the systemic immunity induced by this combination treatment protected these animals against a subcutaneous challenge with parental MCA26 cells. CONCLUSION: Adenovirus-mediated transfer of IL-12 and 4-1BBL genes directly into liver tumors resulted in tumor regression that required both NK and CD8+ T cells and generated a potent, long-lasting antitumor immunity.  相似文献   

19.
We report here that gene transfer using recombinant adenoviruses encoding interleukin (IL)-18 mutants induces potent antitumor activity in vivo. The precursor form of IL-18 (ProIL-18) is processed by caspase-1 to produce bioactive IL-18, but its cleavage by caspase-3 (CPP32) produces an inactive form. To prepare IL-18 molecules with an effective antitumor activity, a murine IL-18 mutant with the signal sequence of murine granulocyte-macrophage (GM)- colony stimulating factor (CSF) at the 5'-end of mature IL-18 cDNA (GMmIL-18) and human IL-18 mutant with the prepro leader sequence of trypsin (PPT), which is not cleaved by caspase-3 (PPThIL-18CPP32-), respectively, were constructed. Adenovirus vectors carrying GMmIL-18 or PPThIL-18CPP32- produced bioactive IL-18. Ad.GMmIL-18 had a more potent antitumor effect than Ad.mProIL-18 encoding immature IL-18 in renal cell adenocarcinoma (Renca) tumor-bearing mice. Tumor-specific cytotoxic T lymphocytes, the induction of Th1 cytokines, and an augmented natural killer (NK) cell activity were detected in Renca tumor-bearing mice treated with Ad.GMmIL-18. An immunohistological analysis revealed that CD4+ and CD8+ T cells abundantly infiltrated into tumors of mice treated with Ad.GMmIL-18. Huh-7 human hepatoma tumor growth in nude mice with a defect of T cell function was significantly inhibited by Ad.PPThIL-18CPP32- compared with Ad.hProIL-18 encoding immature IL-18. Nude mice treated with Ad.PPThIL-18CPP32- contained NK cells with increased cytotoxicity. The results suggest that the release of mature IL-18 in tumors is required for achieving an antitumor effect including tumor-specific cellular immunity and augmented NK cell-mediated cytotoxicity. These optimally designed IL-18 mutants could be useful for improving the antitumor effectiveness of wild-type IL-18.  相似文献   

20.
The interaction between dendritic cells (DCs) and natural killer (NK) cells plays a key role in inducing DC maturation for subsequent T-cell priming. We investigated to generate potent DCs by stimulated with NK cells to induce myeloma-specific cytotoxic T lymphocytes (CTLs). NK cells-stimulated-DCs exhibited high expression of costimulatory molecules and high production of IL-12p70. These DCs induce high potency of Th1 polarization and exhibit a high ability to generate myeloma-specific CTLs responses. These results suggest that functionally potent DCs can be generated by stimulation with NK cells and may provide an effective source of DC-based immunotherapy in multiple myeloma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号