首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 235 毫秒
1.
把密码子优化后的超耐热酸性α-淀粉酶的基因BD5088,引入载体pPIC9K中,将正确构建的重组质粒pPIC9K-BD5088转化毕赤酵母GS115细胞,得到酵母工程菌株。在酵母α-Factor及AOX1基因启动子和终止信号的调控下,重组超耐热酸性α-淀粉酶PrBD5088在甲醇酵母中大量表达并分泌到胞外。该酶受甲醇的严格调控和诱导,在诱导培养5 d后酶活力达到最大值,表达量可达到约200 mg/L。与原核表达产物ErBD5088相比,PrBD5088的酶学性质发生了一定的改变。其最适反应温度由80℃增加到90℃。最适反应pH值仍为pH5.6,但范围更宽,在pH值5.0~6.5之间,其相对酶活在90%以上,在pH4.0~8.0范围内酶活性保留50%以上。而ErBD5088则只在pH5.0~7.0范围内能维持活性的50%以上。且PrBD5088的温度稳定性远高于ErBD5088。PrBD5088在100℃条件下热处理1 h仍具有80%以上的酶活力,而ErBD5088相同条件下的半衰期只有20 min。此外,Ca2+和Zn2+对维持rBD5088活性和稳定性会产生轻微促进作用,该酶的这些优点使其非常适于在工业生产上应用。SDS-PAGE测得该酶的分子量为56 ku,高于原核表达的酶蛋白。重组α-淀粉酶PrBD5088不存在N-连接的糖基化,但是存在O-连接的糖基化现象。本实验结果表明O-连接糖基化可适当提高PrBD5088的热稳定性、最适温度和酸性pH条件下酶活性。  相似文献   

2.
嗜热古菌高温酸性淀粉酶基因合成和大肠杆菌中的表达   总被引:2,自引:1,他引:1  
BD5088是来源于1种嗜热球菌Thermococcus sp.的高温酸性α-淀粉酶的人工突变体,研究中根据BD5088基因的氨基酸序列,经密码子优化,用2步PCR法合成去信号肽后的成熟肽基因。该基因全长1311bp,由436个氨基酸组成。现将其克隆到大肠杆菌的表达载体pET30a上,在大肠杆菌BL21(DE3)中表达,表达出的目的蛋白分子量约为48ku,大小与理论值一致,经过Ni+树脂纯化,得到纯化后的重组酶BD5088。重组α-淀粉酶BD5088具有α-淀粉酶的活性,最适反应温度范围为70~85°C,最适反应pH值为5.6~6.0,在100℃下酶活性半衰期约30min。活性不依赖于Ca2+。本研究为该基因在毕赤酵母中的表达和基因的定向进化改造打下了基础。  相似文献   

3.
对假交替单胞菌JMUZ2的κ-卡拉胶酶进行理性设计,以获得热稳定性提高的突变酶。用PoPMuSiC在线分析工具对假交替单胞菌κ-卡拉胶酶进行分析,筛选了10 个单点突变体。利用定点突变获得突变酶基因,并对突变酶进行诱导表达、纯化及性质鉴定,筛选出酶比活力不降低且热稳定性提高的突变体K155A。热稳定性分析表明,在50、55 ℃和60 ℃分别处理40 min,突变酶残余酶活力分别是野生型酶的1.8、2.7 倍和4.5 倍。酶的结构及分子动力学模拟分析表明,酶分子疏水相互作用和结构刚性的增强是K155A突变体热稳定性提高的可能原因。通过理性设计获得假交替单胞菌κ-卡拉胶酶热稳定性提高的突变体K155A,对改善酶的性质、扩大κ-卡拉胶酶的应用范围以及κ-卡拉胶酶结构与功能关系研究具有重要意义。  相似文献   

4.
通过对黑曲霉(Aspergillus niger)XZ-3S木聚糖酶XynZF-2进行生物信息学分析,在N-端区域引入半胱氨酸,定点突变E27C,构建突变基因xyn-E27C,并在大肠杆菌BL21(DE3)中表达。酶学性质分析发现,突变酶Xyn-E27C的最适温度为45 ℃,与原酶XynZF-2相比提高了5 ℃。在40 ℃条件下,突变酶Xyn-E27C的半衰期t1/240 ℃为100 min,相比原酶XynZF-2(t1/245 ℃=55 min)提高了45 min。在45 ℃条件下,突变酶Xyn-E27C的半衰期t1/245 ℃为24 min,相比原酶XynZF-2(t1/245 ℃=7 min)提高了17 min;突变酶Xyn-E27C的最适pH值由5.0提高至5.5,而pH稳定范围均为5.0~9.0。因此,定点突变E27C对木聚糖酶XynZF-2的热稳定性以及最适pH值均有重要影响。  相似文献   

5.
对来源于黑曲霉(Aspergillus niger)XZ-3S的中温木聚糖酶Xyn ZF-2进行热稳定性改造,定点突变v1c,构建重组突变酶Xyn ZF-2V1C。重组原酶Xyn ZF-2与突变酶Xyn ZF-2V1C基因分别在大肠杆菌BL21(DE3)中表达并进行酶学性质分析。结果发现,突变酶Xyn ZF-2V1C最适温度为50℃,相比原酶Xyn ZF-2最适温度提高了10℃;在45℃条件下的半衰期t45℃1/2,突变酶Xyn ZF-2V1C相对于原酶Xyn ZF-2提高了10 min;原酶Xyn ZF-2与突变酶Xyn ZF-2V1C最适p H均为5.0,p H稳定范围均为5.0~9.0,基本没有变化;原酶Xyn ZF-2和突变酶Xyn ZF-2V1C的Km分别9.96 mg/m L和12.4 mg/m L,Vmax分别为74.63 U/mg和90.91 U/mg。  相似文献   

6.
S179C突变提高宇佐美曲霉木聚糖酶(XynII)热稳定性的研究   总被引:1,自引:0,他引:1  
宇佐美曲霉木聚糖酶(XynⅡ)是G/11族高比活木聚糖酶的一种,通过S179C定点突变,发现酶最适反应温度由原来的50℃提高到52℃;50℃热处理,半衰期由原酶的23min延长到突变后酶的70min,热稳定性提高到原来的3倍;最适反应pH无变化。  相似文献   

7.
曾静  何础阔  郭建军  袁林 《食品科学》2021,42(10):201-208
通过对嗜热酸性III型普鲁兰多糖水解酶TK-PUL进行N末端截短突变,并比较TK-PUL与突变酶的酶学性质,确定N末端结构模块的缺失对酶学性质的影响。结构模块N1的缺失改良了TK-PUL的催化特性,其α-淀粉酶比活力提高至TK-PUL的1.11 倍,普鲁兰酶比活力提高至TK-PUL的1.12 倍,于100 ℃的半衰期延长至TK-PUL的1.15 倍。结构模块N2的缺失提高了酶的热稳定性,于100 ℃的半衰期延长至TK-PUL的1.25 倍。但是结构域N2的缺失降低了酶的pH值稳定性、酶的底物结合能力以及比活力。并且结构域N2影响了酶的底物选择性,导致其α-淀粉酶活性与普鲁兰酶活性的比值由0.49提高至0.60。结果表明,TK-PUL的N末端结构模块N1和N2均不是其发挥催化活性所必需的结构区域,但是对酶的底物结合能力、底物降解能力以及稳定性具有重要影响。  相似文献   

8.
曾静  郭建军  袁林 《食品科学》2017,38(6):48-54
为探索N-糖基化修饰对极端嗜热酸性α-淀粉酶Apk A酶学性质的影响,同时为构建酵母工程菌奠定基础,将Apk A缺失信号肽突变体Apk Ads及含有2个潜在N-糖基化修饰位点的突变体Apk Ads D182N/G373S在毕赤酵母(Pichia pastoris)GS115中进行表达。Apk Ads和Apk Ads D182N/G373S在Pichia pastoris GS115中大量表达并分泌到胞外,Apk Ads的表观分子质量约为45 k D,Apk Ads D182N/G373S的表观分子质量约为55 k D。酶学性质分析表明,与Apk Ads相比,Apk Ads D182N/G373S的酶学性质发生了一定的变化。其最适反应p H值由6.5降低至5.5~6.0,酸性条件下稳定性增强;最适反应温度由90℃提高至100℃;于90℃的半衰期由5 h增加至5.5 h,于100℃保温10 min后的相对酶活力由32.03%增加至49.04%。结果表明N-糖基化修饰可适当提高Apk A的酸性条件下酶活力和稳定性、最适反应温度、热稳定性。突变体Apk Ads D182N/G373S的酶学性质使其适于淀粉液化工艺的应用。  相似文献   

9.
开发耐高温α-淀粉酶是目前淀粉液化工艺的迫切需要,极端嗜热α-淀粉酶具有优良的高温活性和热稳定性,其高温适应性机制研究可以为构建耐高温α-淀粉酶提供理论依据和设计思路。通过分析来源于极端嗜热古生菌Thermococcus kodakarensis KOD1的α-淀粉酶Apk A的氨基酸序列,构建Ca2+结合位点突变体Apk Ads N110A/D155A/D164A。酶学性质分析表明,与野生型Apk Ads相比,突变体Apk Ads N110A/D155A/D164A的高温活性和热稳定性明显降低。其中Apk Ads的最适反应温度为90℃,对应的绝对酶活为2946.75 U/mg;突变体Apk Ads N110A/D155A/D164A的最适反应温度为80℃,对应的绝对酶活为917.07 U/mg。Apk Ads于90℃的半衰期约为5 h,突变体Apk Ads N110A/D155A/D164A于90℃的半衰期约为2 h。本研究结果表明Apk A中Ca2+结合位点与其高温活性和热稳定性均相关,Asn110、Asp155及Asp164这三个氨基酸残基的丙氨酸替换突变不利于Apk A维持其高温活性和热稳定性。  相似文献   

10.
为提高嗜热地衣芽孢杆菌SR01葡聚糖酶的热稳定性,对其相关的氨基酸残基进行定点突变改造。通过对其结构的分析,构建了Y93S突变体,利用分子动力学模拟分析评估后,发现Y93S突变体可能具有较高的耐热能力,利用定点突变技术构建Y93S表达载体并分析温度对表达产物酶活的影响。试验结果表明,突变酶Y93S的最适温度由野生型酶的55 ℃提高至70 ℃;在90 ℃条件下,突变酶Y93S较野生型酶的半衰期由60 min提高到120 min以上;pH及pH稳定性较野生型变化不明显。突变酶Y93S极大的提高了野生型酶的热稳定性,具有潜在的工业应用价值,同时为葡聚糖酶的耐热机理提供有力依据。  相似文献   

11.
曾庆梅  魏春燕  靳靖  吴聪  黄博英 《食品科学》2011,32(17):219-224
以黑曲霉Aspergillus niger基因组DNA为模板,PCR扩增出酸性α-淀粉酶的结构基因,将此基因插入载体pPIC9K,重组质粒pPIC9K-asAA转化毕赤酵母SMD1168,并通过G418平板培养基筛选高拷贝转化子。在酵母α-Factor及AOX1基因启动子和终止信号的调控下,酸性α-淀粉酶大量表达并分泌到胞外,该酶的表达受甲醇的严格调控和诱导,摇瓶培养中,2%甲醇诱导培养168h后酶活力达到最大值2838U/mL。SDS-PAGE结果显示该重组酶的分子质量为58kD。该酶的最适反应pH值为4.0,在pH3.0~6.0之间酶活力基本保持稳定,最适反应温度为70℃,在工业生产常用温度50℃条件下,该酶能够长时间保持稳定,并具有较高的酶活力。重组毕赤酵母遗传稳定性良好。  相似文献   

12.
利用易错PCR技术,建立脂肪酶基因随机突变文库,将随机突变脂肪酶基因转化毕赤酵母GS115,初步筛选了4000株突变菌株,对300株较优突变株进行酶的活力、耐热性、耐酸性的摇管复筛,进一步摇瓶复筛后获得优良突变株ep3,所产突变脂肪酶(ep3-GS)的适宜pH为9.4,适宜作用温度为35℃,与野生重组脂肪酶(PEL-GS)一致,该温度下酶的比活为3440 U/mg,比野生型脂肪酶提高17%。  相似文献   

13.
目的:以云南马龙C3F-2016烟叶表面筛选的产淀粉酶菌株为出发菌株,诱变选育高产淀粉酶菌株并研究诱变前后酶学特性。方法:ARTP技术选育菌株后采用3,5-二硝基水杨酸法测定诱变前后菌株产生的淀粉酶酶活力,并探讨不同温度、不同pH、金属离子、紫外光对淀粉酶活力的影响。结果:诱变选育出一株酶活力有较大提高且传代稳定的突变株Bacillus koreensis FS-103,其淀粉酶活力达9050 U/mL,较出发菌株提高了90%。高产突变株FS-103所产淀粉酶的最适作用温度为60 ℃,最适作用pH5.5,在40~50 ℃和pH5~6之间具有良好的稳定性,Ca2+、Mg2+对淀粉酶活性具有促进作用,紫外照射对淀粉酶活力影响减弱。结论:此诱变选育产淀粉酶菌株的方法可行,为该类菌株进行酶制剂的研究与开发奠定理论基础。  相似文献   

14.
张笑雨  高思宇  李秀婷  杨然 《食品工业科技》2018,39(11):137-143,160
为实现木聚糖酶的高效表达,扩大实际生产应用,本实验将木聚糖酶基因xynA在毕赤酵母中进行重组表达,同时采用糖基化抑制剂衣霉素处理毕赤酵母细胞,以此来探讨N-糖基化对木聚糖酶XynA酶学性质的影响。结果表明,SDS-PAGE电泳图谱显示木聚糖酶XynA发生了N-糖基化修饰,分子量约为45 kDa,酶活为406.6 U/mL,最适pH及反应温度分别为5.0和65 ℃;而添加不同浓度衣霉素处理后的木聚糖酶最适pH不变,最适反应温度下降5 ℃,随着衣霉素浓度的增加,去糖基化的木聚糖酶酶活力、分泌量及温度稳定性均有所下降,且当衣霉素添加浓度为15 μg/mL时,剩余酶活为53.6%。去糖基化的木聚糖酶耐受胃蛋白酶的能力较糖基化的有所增强,Na+、K+、Li+、Ca2+、Al3+、EDTA相对于糖基化的木聚糖酶表现出了一定的激活作用。以上结果说明N-糖基化作为一种重要的翻译后修饰对木聚糖酶XynA的分泌及热稳定性有促进作用。  相似文献   

15.
Existing methods of assay of malt starch‐degrading enzymes were critically appraised. New methods based on natural substrates, namely starch and its natural intermediate‐derivative, were developed for all the enzymes, except limit dextrinase for which pullulan was used. Thermostability, optimal temperatures and pHs were established. α‐Amylase and limit dextrinase were the most thermostable and β‐amylase, α‐glucosidase and maltase were the least stable while diastase occupied an intermediate position. The optimal temperatures were congruent with thermostability, β‐ amylase having the lowest (50°C) and α‐amylase the highest (65°C) with the remaining enzymes, including diastase, falling in between. In contrast, α‐amylase has the lowest optimal pH (pH 4.5) and β amylase the highest (pH 5.5) while the others have pHs in between the two values. The roles of the enzymes were evaluated taking into account the level of activity, thermostability, optimum pH, the nature of the product(s), and the relevance to brewing. β‐Amylase production of maltose was synergistically enhanced, mostly by α‐amylase but also limit dextrinase. α‐Glucosidase and maltase are unimportant for brewing, because of their low activity and the negative impact on β‐amylase activity and the negative effect of glucose on maltose uptake by yeast. The starch‐degrading enzymes (diastase) in a gram of malt were able to degrade more than 8 g boiled starch into reducing sugars in 10 min at 65°C. The latter, suggests that it will be possible to gelatinise most of the malt starch at a higher temperature and ensure its hydrolysis to fermentable sugars by mixing with smaller portions of malt and mashing at lower temperatures e.g. 50–60°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号