首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
随着单台风力机功率的不断增大,变桨距控制对于风力机起动、制动性能的改善和对输出功率的稳定作用不断显现。单台风力机功率的不断增大也导致了塔架的增高和风轮直径的增大,风切变和塔影效应对风轮旋转平面风速分布产生的差异也不断变大。为了验证风速差异对变桨距控制的影响,建立了考虑风切变、塔影效应的风速模型以及基于叶素理论的风力机模型。采用1.5 MW风力机的数据进行研究,仿真验证表明,在集中变桨时,即使参考风速稳定,风速分布的差异也会使实际的风轮输出转矩产生脉动,桨距角产生周期性脉动,从而导致输出功率产生脉动,影响电能质量,同时叶片上产生不平衡的弯矩,增加了叶片的疲劳载荷,缩短了叶片的寿命。大型风力机应采用独立变桨技术来解决这些问题。  相似文献   

2.
为满足分布式电网发展要求,提高小型风力机风能利用率,防止大风条件损坏风力发电设备,文章设计了一种应用于小型风力机的新型主动统一变桨调节装置。文章介绍了装置的基本构造与工作原理,利用熔融沉积3D打印技术制作小比例模型验证了变桨装置的可行性,并通过数值模拟方法对功率输出性能及风轮载荷进行了模拟分析。模拟结果表明:通过适当调节桨距角大小,可有效控制风力机输出功率保持在额定功率值附近,且高转速条件下增大桨距角对功率输出性能有较强抑制作用;叶片应力集中区域主要在叶根及叶片中部靠近前缘部位,在功率调控过程中,随着桨距角与风速的增加,应力集中区域由叶中向叶根转移,最大应力值总体呈下降趋势。  相似文献   

3.
针对垂直轴风力机自启动性能差和风能利用率低的问题,提出一种新型自动变桨距垂直轴风力机方案。结合垂直轴风力机叶片攻角变化及翼型气动力特性,制定了一种最优叶片桨距角变化模式。根据叶素理论,计算得到了采用该变桨距模式在低叶尖速比和高叶尖速比时的叶轮扭矩系数,结果表明,采用该变桨距模式可有效增大垂直轴风力机的启动力矩以及提高其风能利用系数,为进一步开发自动变桨距垂直轴风力机奠定了研究基础。  相似文献   

4.
为深入研究基于振动理论的风力机叶片覆冰诊断技术,对不同覆冰状态下的风力机叶片进行动力特性模拟实验。通过研究各阶次下、各温度下振型曲率与覆冰的关系,定义覆冰位置特征值和覆冰程度特征指标。借助Matlab软件拟合得到覆冰位置诊断阈值函数以及厚度计算公式,从而建立风力机叶片覆冰状态定量检测指标体系。最后对所提出的覆冰状态诊断指标体系做实例验算,结果表明该方法对风力机叶片覆冰状态识别具有较高的准确度。  相似文献   

5.
提出了多次迭代优化设定诱导因子初始值的方法,并以功率输出和年发电量最大为优化目标,在遗传算法的基础上对1.5MW风力机叶片进行了优化设计.为了改善风力机在低风速区域内的输出功率特性,对风轮转速进行了优化.结果表明:优化后,风力机叶片的弦长值得到大幅度的降低,达到额定风速后的功率输出情况也满足了定桨距风力机的功率控制要求,说明该优化方法可以加速搜索寻优过程并保证获得全局最优解;转速优化后,当风力机采用二级转速运行时,年最大输出功率比采用单一额定转速运行时可提高1.16%.  相似文献   

6.
针对大型变速变桨风力机在高风速区的气动性能随桨距角变化而改变的特性,文章提出了一种功率-桨距角变化的灵敏度控制策略。通过设计功率灵敏度因子调节PID变桨距控制器,建立输出功率偏差与风轮转速偏差的闭环系统。将提出的策略应用到某5 MW风机的参数模型中,利用MATLAB平台进行仿真验证。结果表明,提出的控制策略抑制了高风速区的扰动风速对系统的影响,使输出功率和风轮转速保持在额定值附近且波动很小,提高了系统的动态性能和稳态性能,同时提高了发电质量,并为风电机组并网需求奠定了理论基础。  相似文献   

7.
由于存在风速的高度切变,使同步变桨距风力机风轮的各个叶片并非都处于最佳升阻比状态,影响了风力机功率的输出和减少了风力机的使用寿命。通过对风力机叶片的空气动力学分析,提出要使叶片始终处于最佳升阻比的基本原理以及实现这一目标时变桨系统所应达到的要求。  相似文献   

8.
变桨距风力机叶片的气动优化设计   总被引:1,自引:0,他引:1  
首先利用Wilson方法进行叶片的外形初步设计,然后以设计攻角作为变量,以额定风速下功率系数最大为优化目标,建立了1 MW变桨距风力机叶片气动外形优化模型,采用遗传算法进行了优化再设计。通过对3叶片1 MW风力机进行的气动性能评价结果表明,优化后的风力机具有更好的气动性能,说明采用该优化方法进行变桨距风力机设计具有明显的优越性。  相似文献   

9.
为了减小风力机叶轮的气动载荷,文章提出了将叶片方位角权系数分配与叶片根部气动载荷反馈相结合的独立变桨距控制方法(AAWC-LF)。控制器依据方位角的大小不同,利用权系数分配器重新分配每个叶片桨距角的调整变化量。同时,考虑到现场实际风速会突然大幅变化,在基于方位角权系数分配的独立变桨距控制基础上,增加了基于叶片根部实际气动载荷的桨距角修正环节。通过对比仿真曲线和实验结果,发现该算法增加了桨距角的调整次数,同时减小了叶轮所承受的气动载荷,对机组的输出有功功率没有形成冲击,叶轮转速更加平稳,控制效果较理想。  相似文献   

10.
风力机的新型变桨距自抗扰控制系统   总被引:1,自引:0,他引:1  
采用高速浮点 TMS320F28335(DSP)芯片作为硬件核心控制器,运用自抗扰控制系统算法对风力机桨距角进行精确调整,实现了一种由新型软硬件相结合的风力机变桨距控制系统.结果表明:当风速高于额定风速或者瞬时输出功率大于额定功率时,通过对桨叶桨距角的精确调整,可使输出功率动态维持在额定功率附近.变桨距自抗扰控制系统算法实现简单,具有良好的动态响应特性,能有效保障风力机的安全运行.  相似文献   

11.
Prediction of ice shapes on a wind turbine blade makes it possible to estimate the power production losses due to icing. Ice accretion on wind turbine blades is responsible for a significant increase in aerodynamic drag and decrease in aerodynamic lift and may even cause premature flow separation. All these events create power losses and the amount of power loss depends on the severity of icing and the turbine blade profile. The role of critical parameters such as wind speed, temperature, liquid water content on the ice shape, and size is analyzed using an ice accretion prediction methodology coupled with a blade element momentum tool. The predicted ice shapes on various airfoil profiles are validated against the available experimental and numerical data in the literature. The error in predicted rime and glime ice volumes and the maximum ice thicknesses varies between 3% and 25% in comparison with the experimental data depending on the ice type. The current study presents an efficient and accurate numerical methodology to perform an investigation for ice‐induced power losses under various icing conditions on horizontal axis wind turbines. The novelty of the present work resides in a unified and coupled approach that deals with the ice accretion prediction and performance analysis of iced wind turbines. Sectional ice profiles are first predicted along the blade span, where the concurrence of both rime and glaze ice formations may be observed. The power loss is then evaluated under the varying ice profiles along the blade. It is shown that the tool developed may effectively be used in the prediction of power production losses of wind turbines at representative atmospheric icing conditions.  相似文献   

12.
详细分析叶片结冰对风电机组运行性能和运行参数的影响,采用功率、叶轮转速和环境温度作为监测叶片结冰的变量.采用高斯过程回归分别建立功率模型和叶轮转速模型实现2个参数的实时监测.引入序贯概率比检验方法分析功率和叶轮转速模型的预测残差以发现2个参数在叶片结冰时的异常变化.当风电机组功率异常、叶轮转速异常且环境温度在0℃附近这...  相似文献   

13.
Wind turbine aerodynamic response under atmospheric icing conditions   总被引:1,自引:0,他引:1  
This article deals with the atmospheric ice accumulation on wind turbine blades and its effect on the aerodynamic performance and structural response. The role of eight atmospheric and system parameters on the ice accretion profiles was estimated using the 2D ice accumulation software lewice Twenty‐four hours of icing, with time varying wind speed and atmospheric icing conditions, was simulated on a rotor. Computational fluid dynamics code, FLUENT, was used to estimate the aerodynamic coefficients of the blade after icing. The results were also validated against wind tunnel measurements performed at LM Wind Power using a NACA64618 airfoil. The effects of changes in geometry and surface roughness are considered in the simulation. A blade element momentum code WT‐Perf is then used to quantify the degradation in performance curves. The dynamic responses of the wind turbine under normal and iced conditions were simulated with the wind turbine aeroelastic code HAWC2. The results show different behaviors below and above rated wind speeds. In below rated wind speed, for a 5 MW virtual NREL wind turbine, power loss up to 35% is observed, and the rated power is shifted from wind speed of 11 to 19 m s?1. However, the thrust of the iced rotor in below rated wind speed is smaller than the clean rotor up to 14%, but after rated wind speed, it is up to 40% bigger than the clean rotor. Finally, it is briefly indicated how the results of this paper can be used for condition monitoring and ice detection. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
A numerical study of power performance losses due to ice accretion on a large horizontal axis wind turbine blade has been carried out using computational fluid dynamics (CFD) and blade element momentum (BEM) calculations for rime ice conditions. The computed aerodynamic coefficients for the normal and iced blades from the CFD calculations were used together with the BEM method to calculate the torque, power and curves of the wind turbine for both normal and icing conditions. The results are compared with the published data. It is shown that icing results in a reduced power production from the turbine and that changing the turbine controller could improve the power production with iced blades. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Phases of icing on wind turbine blades characterized by ice accumulation   总被引:1,自引:0,他引:1  
Icing experiments on wind turbine blade profiles have been performed at the University of Manitoba Icing Tunnel Facility to facilitate a greater understanding of the mechanisms involved in the icing process for wind turbines exposed to cold climates. Blade icing results in the degradation of power performance and is a critical issue for the optimization of power performance and safe operation of wind turbines. Accumulation rate, the amount of ice that accumulates at the leading edge of the blade profile as a function of time, provides a characteristic measurement that can be used to classify the phases of icing in an icing event and further identify the severity of potential problems arising as a result of ice accumulation on wind turbine blades. To control this characteristic, the mitigation strategies that were employed involved coatings, heat treatments and the combination thereof, in both glaze and rime icing regimes. By understanding the icing process and its characteristic behavior to non-mitigated and mitigated scenarios, the phases of icing of both circumstances may be defined. This paper documents the data recorded from the experimental icing event and provides results of the comparative behavior of the icing mitigation strategies and extends this understanding to define the phases of icing on wind turbine blades.  相似文献   

16.
Wind park power production in cold climate regions is significantly impacted by ice growth on turbine blades. This can lead to significant errors in power forecasts and in the estimation of expected power production during turbine siting. A modeling system is presented that uses a statistical modeling approach to estimate the power loss due to icing, using inputs from both a physical icing and a numerical weather prediction model. The physical icing model is that of Davis et al., 1 with updates to the simulation of ice ablation. A new approach for identifying periods of turbine blade icing from power observations was developed and used to calculate the observed power loss caused by icing. The observed icing power loss for 2years at six wind parks was used to validate the modeling system performance. Production estimates using the final production loss model reduce the root mean squared error when compared with the empirical wind park power curve (without icing influence) at five of the six wind parks while reducing the mean bias at all six wind parks. In addition to performing well when fit to each wind park, the production loss model was shown to improve the estimate of power when fit using all six wind parks, suggesting it may also be useful for wind parks where production data are not available. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Effect of icing roughness on wind turbine power production   总被引:1,自引:0,他引:1       下载免费PDF全文
The objective of this work is a quantitative analysis of power loss of a representative 1.5‐MW wind turbine subject to various icing conditions. Aerodynamic performance data are measured using a combination of ice accretion experiments and wind tunnel tests. Atmospheric icing conditions varying in static temperature, droplet diameter and liquid water content are generated in an icing facility to simulate a 45‐min icing event on a DU 93‐W‐210 airfoil at flow conditions pertinent to 80% blade span on a 1.5‐MW wind turbine. Iced airfoil shapes are molded for preservation and casted for subsequent wind tunnel testing. In general, ice shapes are similar in 2D profile, but vary in 3D surface roughness elements and in the ice impingement length. Both roughness heights and roughness impingement zones are measured. A 16% loss of airfoil lift at operational angle of attack is observed for freezing fog conditions. Airfoil drag increases by 190% at temperatures near 0° C, 145% near 10° C and 80% near 20° C. For a freezing drizzle icing condition, lift loss and drag rise are more severe at 25% and 220%, respectively. An analysis of the wind turbine aerodynamic loads in Region II leads to power losses ranging from 16% to 22% for freezing fog conditions and 26% for a freezing drizzle condition. Differences in power loss between icing conditions are correlated to variance in temperature, ice surface roughness and ice impingement length. Some potential control strategies are discussed for wind turbine operators attempting to minimize revenue loss in cold‐climate regions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
该文旨在通过变桨来改善升力型立轴风力机叶片气动特性,提高风力机最大运行效率。针对设计尖速比下风能利用系数较低的问题,提出减小叶片小攻角范围,增大叶片大攻角工作范围,以重点改善叶片低性能区域的气动特性为出发点,提高风能利用系数新变桨思路。以采用NACA0012翼型、2 m高和2 m旋转直径的两叶片H型风力机为研究对象,从涡理论来分析和比较在最佳尖速比为5的条件下,附着涡、尾随涡、脱体涡和桨距角对攻角、切向力和功率输出的影响规律。研究结果表明:变桨后,叶片的攻角、切向力和输出功率在原最大值两侧均有明显提高,拓宽了叶片高性能的工作区域;涡系中脱体涡对叶片气动特性影响最大,其中在上盘面影响较小,在下盘面影响较大;变桨前后涡系对上盘面的差异较小,对下盘面的影响差异较明显;变桨后,下盘面的叶片的涡尾迹弯曲程度在加大。  相似文献   

19.
采用计算流体力学方法(CFD)针对垂直轴风力发电机,开展简化的二维绕流特性研究。首先,基于开放型转子和增强型转子,研究网格节点数和壁面y+、计算时间步长和湍流模型等的变化对计算结果的影响,对计算模型和方法进行确认。随后,计算分析增强型垂直轴风力机与开放型垂直轴风力机的特性。结果表明,与开放性垂直轴风力发电机相比,增强型垂直轴风力发电机的功率系数和转矩系数有明显增加,且达到最大值的位置向叶尖速比增大的方向移动。然后对增强型垂直轴风力机发电机在不同来流风速下进行计算,发现增强型垂直轴风力发电机的转子转矩随来流风速增加,而转矩系数和功率系数与来流风速无关。最后,针对定子叶片在不同的方向开展计算研究。结果表明,定子叶片在不同方向时,增强型垂直轴风力机的转子转矩不同,且转矩到达峰值的位置也不同;在当前3个方向角中,叶片处于0°方向角时风力机具有最高的转矩系数,即具有最佳的功率系数。  相似文献   

20.
变速风力发电机组一般采用变桨距控制来稳定输出功率,但是桨距角的改变会引起攻角的改变,从而引起叶片气动性能的改变,所以在变桨距控制过程中,必须保证合适的攻角,以确保风力机具有良好的气动性能。采用统一变桨距控制方法,在matlab/simulink环境下,通过预测攻角仿真研究了变速风力发电机组的变桨距控制过程,结果表明,该控制模型能正确模拟各种风速下风力发电机组变桨距的动态过程,为进一步研究变速风力发电机的功率控制奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号