首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To investigate the effects of external resistance on the biofilm formation and electricity generation of microbial fuel cells (MFCs), active biomass, the content of extracellular polymeric substances (EPS) and the morphology and structure of the biofilms developed at 10, 50, 250 and 1000 Ω are characterized. It is demonstrated that the structure of biofilm plays a crucial role in the maximum power density and sustainable current generation of MFCs. The results show that the maximum power density of the MFCs increases from 0.93 ± 0.02 W m−2 to 2.61 ± 0.18 W m−2 when the external resistance decreases from 1000 to 50 Ω. However, on further decreasing the external resistance to 10 Ω, the maximum power density decreased to 1.25 ± 0.01 W m−2 because of a less active biomass and higher EPS content in the biofilm. Additionally, the 10 Ω MFC shows a highest maximum sustainable current of 8.49 ± 0.19 A m−2. This result can be attributed to the existence of void spaces beneficial for proton and buffer transport within the anode biofilm, which maintains a suitable microenvironment for electrochemically active microorganisms.  相似文献   

2.
The ability of electron transfer from microbe cell to anode electrode plays a key role in microbial fuel cell (MFC). This study explores a new approach to improve the MFC performance and electron transfer rate through addition of Tween 80. Results demonstrate that, for an air-cathode MFC operating on 1 g L−1 glucose, when the addition of Tween 80 increases from 0 to 80 mg L−1, the maximum power density increases from 21.5 to 187 W m−3 (0.6-5.2 W m−2), the corresponding current density increases from 1.8 to 17 A m−2, and the resistance of MFC decreases from 27.0 to 5.7 Ω. Electrochemical impedance spectroscopy (EIS) analysis suggests that the improvement of overall performance of the MFC can be attributed to the addition of Tween 80. The high power density achieved here may be due to the increase of permeability of cell membranes by addition of Tween 80, which reduces the electron transfer resistance through the cell membrane and increases the electron transfer rate and number, consequently enhances the current and power output. A promising way of utilizing surfactant to improve energy generation of MFC is demonstrated.  相似文献   

3.
Substantial optimization and cost reduction are required before microbial fuel cells (MFCs) can be practically applied. We show here the performance improvement of an air-cathode single-chamber MFC by using a microfiltration membrane (MFM) on the water-facing side of the cathode and using multiple aerobic sludge (AES), anaerobic sludge (ANS), and wetland sediment (WLS) as anodic inoculums. Batch test results show that the MFC with an MFM resulted in an approximately two-fold increase in maximum power density compared to the MFC with a proton exchange membrane (PEM). The Coulombic efficiency increased from 4.17% to 5.16% in comparison with the membrane-less MFC, without a significant negative effect on power generation and internal resistance. Overall performance of the MFC was also improved by using multiple sludge inoculums in the anode. The MFC inoculated with ANS + WLS produced the greatest maximal power density of 373 mW m−2 with a substantially low internal resistance of 38 Ω. Higher power density with a decreased internal resistance was also achieved in MFC inoculated with ANS + AES and ANS + AES + WLS in comparison with those inoculated with only one sludge. The MFCs inoculated with AES + ANS achieved the highest Coulombic efficiency. Over 92% COD was removed from confectionery wastewater in all tested MFCs, regardless of the membrane or inoculum used.  相似文献   

4.
A biological hydrogen-producing system is configured through coupling an electricity-assisting microbial fuel cell (MFC) with a hydrogen-producing microbial electrolysis cell (MEC). The advantage of this biocatalyzed system is the in-situ utilization of the electric energy generated by an MFC for hydrogen production in an MEC without external power supply. In this study, it is demonstrated that the hydrogen production in such an MEC-MFC-coupled system can be manipulated through adjusting the power input on the MEC. The power input of the MEC is regulated by applying different loading resistors connected into the circuit in series. When the loading resistance changes from 10 Ω to 10 kΩ, the circuit current and volumetric hydrogen production rate varies in a range of 78 ± 12 to 9 ± 0 mA m−2 and 2.9 ± 0.2 to 0.2 ± 0.0 mL L−1 d−1, respectively. The hydrogen recovery (RH2), Coulombic efficiency (CE), and hydrogen yield (YH2) decrease with the increase in loading resistance. Thereafter, in order to add power supply for hydrogen production in the MEC, additional one or two MFCs are introduced into this coupled system. When the MFCs are connected in series, the hydrogen production is significantly enhanced. In comparison, the parallel connection slightly reduces the hydrogen production. Connecting several MFCs in series is able to effectively increase power supply for hydrogen production, and has a potential to be used as a strategy to enhance hydrogen production in the MEC-MFC-coupled system from wastes.  相似文献   

5.
Photoautotrophic algae Scenedismus obliquus could attach on the surface of a cathode electrode and produced oxygen for electricity generation in microbial fuel cell (MFC). Oxygen concentration by algae aeration in the cathode chamber increased from 0 to 15.7 mg/l within 12-h, and a voltage generation of 0.47 ± 0.03 V was obtained with 1000 Ω external resistance. In polarization test, MFC with algal aeration exhibited the maximum power density of 153 mW/m2, which was 32% higher than the value (116 mW/m2) with mechanical aeration at oxygen concentration of 5.9 mg/l. The internal resistance of MFC with algal aeration decreased in ohmic resistance (5.9–5.2 Ω) and charge transfer resistance (9.6–7.2 Ω) over 72-h operation. Cyclic voltammetry of cathode during algal aeration revealed higher reduction current of −9.3 mA compared to mechanical aeration (−4.7 mA).  相似文献   

6.
A submersible microbial fuel cell (SMFC) was developed by immersing an anode electrode and a cathode chamber in an anaerobic reactor. Domestic wastewater was used as the medium and the inoculum in the experiments. The SMFC could successfully generate a stable voltage of 0.428 ± 0.003 V with a fixed 470 Ω resistor from acetate. From the polarization test, the maximum power density of 204 mW m−2 was obtained at current density of 595 mA m−2 (external resistance = 180 Ω). The power generation showed a saturation-type relationship as a function of wastewater strength, with a maximum power density (Pmax) of 218 mW m−2 and a saturation constant (Ks) of 244 mg L−1. The main limitations for achieving higher electricity production in the SMFC were identified as the high internal resistance at the electrolyte and the inefficient electron transfer at the cathode electrode. As the current increased, a large portion of voltage drop was caused by the ohmic (electrolyte) resistance of the medium present between two electrodes, although the two electrodes were closely positioned (about 3 cm distance; internal resistance = 35 ± 2 Ω). The open circuit potential (0.393 V vs. a standard hydrogen electrode) of the cathode was much smaller than the theoretical value (0.804 V). Besides, the short circuit potential of the cathode electrode decreased during the power generation in the SMFC. These results demonstrate that the SMFC could successfully generate electricity from wastewater, and has a great potential for electricity production from existing anaerobic reactors or other anaerobic environments such as sediments. The advantage of the SMFC is that no special anaerobic chamber (anode chamber) is needed, as existing anaerobic reactors can be used, where the cathode chamber and anode electrode are immersed.  相似文献   

7.
Scale-up studies of Microbial Fuel Cells are required before practical application comes into sight. We studied an MFC with a surface area of 0.5 m2 and a volume of 5 L. Ferric iron (Fe3+) was used as the electron acceptor to improve cathode performance. MFC performance increased in time as a combined result of microbial growth at the bio-anode, increase in iron concentration from 1 g L−1 to 6 g L−1, and increased activity of the iron oxidizers to regenerate ferric iron. Finally, a power density of 2.0 W m−2 (200 W m−3) was obtained. Analysis of internal resistances showed that anode resistance decreased from 109 to 7 mΩ m2, while cathode resistance decreased from 939 to 85 mΩ m2. The cathode was the main limiting factor, contributing to 58% of the total internal resistance. Maximum energy efficiency of the MFC was 41%.  相似文献   

8.
A surface floating, air cathode, microbial fuel cell (MFC) with a horizontal flow is devised and characterized using glucose-based synthetic wastewater. The performance of the MFC is significantly affected by the current-collector of the electrodes. When graphite foil ribbon (150 cm) serves as the current-collector, the respective specific internal resistance and maximum power density are 0.362 Ω m−2 and 124.0 W m−3. The internal resistance can be reduced by increasing the length of the current-collector. For a graphite ribbon current-collector 256 cm long, the specific internal resistance is only 0.187 Ω m−2 and the maximum power density markedly increases to 253.6 W m−3; however, the maximum power density is affected by the current-collector material. When the current-collector is changed to a stainless-steel wire, the maximum power density is reduced to approximately 100 W m−3 because of its high liquid|solid interfacial impedance. During three continuous months of operation, issues such as leaking are not observed and as such, the MFC could be easily scaled-up for wastewater treatment by increasing the electrode size and stacking a number of cells without additional ohmic resistance.  相似文献   

9.
A single chamber microbial fuel cell (MFC) with an air-cathode is successfully demonstrated using glucose-ceftriaxone sodium mixtures or ceftriaxone sodium as fuel. Results show that the ceftriaxone sodium can be biodegraded and produce electricity simultaneously. Interestingly, these ceftriaxone sodium-glucose mixtures play an active role in production of electricity. The maximum power density is increased in comparison to 1000 mg L−1 glucose (19 W m−3) by 495% for 50 mg L−1 ceftriaxone sodium + 1000 mg L−1 glucose (113 W m−3), while the maximum power density is 11 W m−3 using 50 mg L−1 ceftriaxone sodium as the sole fuel. Moreover, ceftriaxone sodium biodegradation rate reaches 91% within 24 h using the MFC in comparison with 51% using the traditional anaerobic reactor. These results indicate that some toxic and bio-refractory organics such as antibiotic wastewater might be suitable resources for electricity generation using the MFC technology.  相似文献   

10.
The performance of a dual anode-chambered microbial fuel cell (MFC) inoculated with Shewanella oneidesis MR-1 was evaluated. This reactor was constructed by incorporating two anode chambers flanking a shared air cathode chamber in an electrically parallel, geometrically stacked arrangement. The device was shown to have the same maximum power density (approximately 24 W m−3, normalized by the anode volume) as a single anode-, single cathode-chambered MFC. The dual anode-chambered unit generated a maximum current of 3.66 mA (at 50 Ω), twice the value of 1.69 mA (at 100 Ω) for the single anode-chambered device at approximately the same volumetric current density. Increasing the Pt-coated cathode surface area by 100% (12 to 24 cm2) had no significant effect on the power generation of the dual anode-chambered MFC, indicating that the performance of the device was limited by the anode. The medium recirculation rate and substrate concentration in the anode were varied to determine their effect on the anode-limited power density. At the highest recirculation rate, 5 ml min−1, the power density was about 25% higher than at the lowest recirculation rate, 1 ml min−1. The dependence of the power density on the lactate concentration showed saturation kinetics with a half-saturation constant Ks on the order of 4.4 mM.  相似文献   

11.
The efficiency and sustainability of microbial fuel cell (MFC) are heavily dependent on the cathode performance. We show here that the use of graphite fiber brush (GBF) together with graphite granules (GGs) as a basal material for biocathode (MFC reactor type R1) significantly improve the performance of a MFC compared with MFCs using GGs (MFC reactor type R2) or GFB (MFC reactor type R3) individually. Compared with R3, the use of the combination biocathode (R1) can shorten the start-up time by 53.75%, improve coulombic efficiencies (CEs) by 21.0 ± 2.7% at external resistance (REX) of 500 Ω, and increase maximum power densities by 38.2 ± 12.6%. Though the start-up time and open circuit voltage (OCV) of the reactor R2 are similar to R1, the CE (REX = 500 Ω) and maximum power density of R2 are 21.4 ± 1.7% and 38.2 ± 15.6% lower than that of R1. Fluorescence in situ hybridization (FISH) analyses indicate the bacteria on cathodes of R1 and R2 are richer than that of R3. Molecular taxonomic analyses reveal that the biofilm formed on the biocathode surface is dominated by strains belonging to Nitrobacter, Achromobacter, Acinetobacter, and Bacteroidetes. Combination of GFB and GGs as biocathode material in MFC is more efficient and can achieve sustainable electricity recovery from organic substances, which substantially increases the viability and sustainability of MFCs.  相似文献   

12.
Continuous bioelectricity generation was studied in a novel up-flow bio-cathode microbial fuel cell (MFC). The performance of MFC-1, employing commercially available proton exchange membrane (PEM), was evaluated under different organic loading rates (OLRs). Maximum volumetric power density of 10.04 W m−3 was obtained in MFC-1 at the OLR of 0.923 kg COD m−3 d−1. Overall chemical oxygen demand (COD) removal efficiency more than 90% was achieved under all the OLRs. The performance of MFC-1 was compared with MFC-2, in which the inner anode chamber was made up of earthen cylinder, without employing polymer membrane. MFC-2 generated maximum volumetric power density of 14.59 W m−3 at OLR of 0.923 kg COD m−3 d−1, which was 46% higher than that produced in MFC-1. The internal resistance of MFC-1 (96 Ω) was higher than MFC-2 (69 Ω). The earthen cylinder MFC demonstrated better COD removal and power generation than the MFC employing PEM.  相似文献   

13.
Multi-anode/cathode microbial fuel cells (MFCs) incorporate multiple MFCs into a single unit, which maintain high power generation at a low cost and small space occupation for the scale-up MFC systems. The power production of multi-anode/cathode MFCs was similar to the total power production of multiple single-anode/cathode MFCs. The power density of a 4-anode/cathode MFC was 1184 mW/m3, which was 3.2 times as that of a single-anode/cathode MFC (350 mW/m3). The effect of chemical oxygen demand (COD) was studied as the preliminary factor affecting the MFC performance. The power density of MFCs increased with COD concentrations. Multi-anode/cathode MFCs exhibited higher power generation efficiencies than single-anode/cathode MFCs at high CODs. The power output of the 4-anode/cathode MFCs kept increasing from 200 mW/m3 to 1200 mW/m3 as COD increased from 500 mg/L to 3000 mg/L, while the single-anode/cathode MFC showed no increase in the power output at CODs above 1000 mg/L. In addition, the internal resistance (Rin) exhibited strong dependence on COD and electrode distance. The Rin decreased at high CODs and short electrode distances. The tests indicated that the multi-anode/cathode configuration efficiently enhanced the power generation.  相似文献   

14.
Substrate bioavailabity is one of the critical factors that determine the relative biohydrogen (bioH2) yield in fermentative hydrogen production and bioelectricity output in a microbial fuel cell (MFC). In the present undertaking, batch bioH2 production and MFC-based biolectricity generation from ultrasonically pretreated palm oil mill effluent (POME) were investigated using heat-pretreated anaerobic sludge as seed inoculum. Maximum bioH2 production (0.7 mmol H2/g COD) and COD removal (65%) was achieved at pH 7, for POME which was ultrasonically pretreated at a dose of 195 J/mL. Maximum value for bioH2 productivity and COD removal at this sonication dose was higher by 38% and 20%, respectively, than unsonicated treatments. In batch MFC experiments, the same ultrasound dose led to reduced lag-time in bioelectricity generation with concomitant 25% increase in bioelectricity output (18.3 W/m3) and an increase of COD removal from 30% to 54%, as compared to controls. Quantitative polymerase chain reaction (qPCR) tests on sludge samples from batch bioH2 production reflected an abundance of gene fragments coding for both clostridial and thermoanaerobacterial [FeFe]-hydrogenase. Fluorescence in situ hybridization (FISH) tests on sludge from MFC experiments showed Clostridium spp. and Thermoanaerobacterium spp. as the dominant microflora. Results suggest the potential of ultrasonicated POME as sustainable feedstock for dark fermentation-based bioH2 production and MFC-based bioelectricity generation.  相似文献   

15.
Reversible solid oxide fuel cells (R-SOFCs) are regarded as a promising solution to the discontinuity in electric energy, since they can generate electric powder as solid oxide fuel cells (SOFCs) at the time of electricity shortage, and store the electrical power as solid oxide electrolysis cells (SOECs) at the time of electricity over-plus. In this work, R-SOFCs with thin proton conducting electrolyte films of BaCe0.5Zr0.3Y0.2O3−δ were fabricated and their electro-performance was characterized with various reacting atmospheres. At 700 °C, the charging current (in SOFC mode) is 251 mA cm−2 at 0.7 V, and the electrolysis current densities (in SOEC mode) reaches −830 mA cm−2 at 1.5 V with 50% H2O-air and H2 as reacting gases, respectively. Their electrode performance was investigated by impedance spectra in discharging mode (SOFC mode), electrolysis mode (SOEC mode) and open circuit mode (OCV mode). The results show that impedance spectra have different shapes in all the three modes, implying different rate-limiting steps. In SOFC mode, the high frequency resistance (RH) is 0.07 Ωcm2 and low frequency resistances (RL) are 0.37 Ωcm2. While in SOEC mode, RH is 0.15 Ωcm2, twice of that in SOFC mode, and RL is only 0.07 Ωcm2, about 19% of that in SOFC mode. Moreover, the spectra under OCV conditions seems like a combination of those in SOEC mode and SOFC mode, since that RH in OCV mode is about 0.13 Ωcm2, close to RH in SOEC mode, while RL in OCV mode is 0.39 Ωcm2, close to RL in SOFC mode. The elementary steps for SOEC with proton conducting electrolyte were proposed to account for this phenomenon.  相似文献   

16.
Single chamber air-cathode microbial fuel cells (MFCs) that lack a proton exchange membrane (PEM) hold a great promise for many practical applications due to their low operational cost, simple configuration and relative high power density. One of the great challenges for PEM-less MFC is that the Coulombic efficiency is much lower than those containing PEM. In this study, single-chamber PEM-less MFCs were adapted by applying a J-Cloth layer on the water-facing side of air cathode. Due to the significant reduction of oxygen diffusion by the J-Cloth, the MFCs with two-layers of J-Cloth demonstrated an over 100% increase in Coulombic efficiency in comparison with those without J-Cloth (71% versus 35%) at the same current density of 0.6 mA cm−2. A new cell configuration, cloth electrode assembly (CEA), therefore, was designed by sandwiching the cloth between the anode and the cathode. Such an MFC configuration greatly reduced the internal resistance, resulting in a power density of 627 W m−3 when operated in fed-batch mode and 1010 W m−3 in continuous-flow mode, which is the highest reported power density for MFCs and more than 15 times higher than those reported for air-cathode MFCs using similar electrode materials. This study indicates that the Coulombic efficiency and power density of air-cathode MFCs can be improved significantly using an inexpensive cloth layer, which greatly increases the feasibility for the practical applications of MFCs.  相似文献   

17.
Microbial fuel cells (MFCs) are biochemical-catalyzed systems in which electricity is produced by oxidizing biodegradable organic matters in presence of either bacteria or enzyme. This system can serve as a device for generating clean energy and, also wastewater treatment unit. In this paper, production of bioelectricity in MFC in batch and continuous systems were investigated. A dual chambered air–cathode MFC was fabricated for this purpose. Graphite plates were used as electrodes and glucose as a substrate with initial concentration of 30 g l−1 was used. Cubic MFC reactor was fabricated and inoculated with Saccharomyces cerevisiae PTCC 5269 as active biocatalyst. Neutral red with concentration of 200 μmol l−1 was selected as electron shuttle in anaerobic anode chamber. In order to enhance the performance of MFC, potassium permanganate at 400 μmol l−1 concentration as oxidizer was used. The performance of MFC was analyzed by the measurement of polarization curve and cyclic volatmmetric data as well. Closed circuit voltage was obtained using a 1 kΩ resistance. The voltage at steady-state condition was 440 mV and it was stable for the entire operation time. In a continuous system, the effect of hydraulic retention time (HRT) on performance of MFC was examined. The optimum HRT was found to be around 7 h. Maximum produced power and current density at optimum HRT were 1210 mA m−2 and 283 mW m−2, respectively.  相似文献   

18.
In this paper, we investigated the use of polyamidoamine (PAMAM) dendrimer-encapsulated platinum nanoparticles (Pt-DENs) as a promising type of cathode catalyst for air-cathode single chamber microbial fuel cells (SCMFCs). The Pt-DENs, prepared via template synthesis method, have uniform diameter distribution with size range of 3-5 nm. The Pt-DENs then loaded on to a carbon substrate. For comparison, we also electrodeposited Pt on carbon substrate. The calculation shows that the loading amount of Pt-DENs on carbon substrate is about 0.1 mg cm−2, which is three times lower than that of the electrodeposited Pt (0.3 mg cm−2). By measuring batch experiments, the results show that Pt-DENs in air-cathode SCMFCs have a power density of 630 ± 5 mW m−2 and a current density of 5200 ± 10 mA m−2 (based on the projected anodic surface area), which is significantly better than electrodeposited Pt cathodes (power density: 275 ± 5 mW m−2 and current density: 2050 ± 10 mA m−2). Additionally, Pt-DENs-based cathodes resulted in a higher power production with 129.1% as compared to cathode with electrodeposited Pt. This finding suggests that Pt-DENs in MFC cathodes is a better catalyst and has a lower loading amount than electrodeposited Pt, and may serve as a novel and alternative catalyst to previously used noble metals in MFC applications.  相似文献   

19.
The cost of electrode materials is one of the most important factors limiting the scale of microbial fuel cells (MFCs). In this study, a novel double-sided cloth (DC) without diffusion layer is using as air-cathode, which decreases the cost and simplifies electrode production process. Using Pt as catalyst, the maximum power density of MFC using DC cathode is 0.70 ± 0.02 W m−2, which is similar to that obtained using carbon cloth (CC) cathodes (0.66 ± 0.01 W m−2). After running in stable status, the Coulombic efficiencies (CEs) (18 ± 1%) and COD removal rates (75 ± 3%) are almost the same as those of CC cathode with diffusion layers. Using carbon powder as catalyst on the DC cathode, the maximum powder density is 0.41 ± 0.01 W m−2, with a COD removal rate of 66 ± 2% and a CE of 13.9 ± 0.5%. The total cost of cathode based on power output decreases as follows: CC with Pt (CC-Pt, 2652$ W−1), DC with Pt (DC-Pt, 1007$ W−1) and DC with carbon powder (DC-C, 22$ W−1), showing that DC is an inexpensive and promising cathode material for future applications.  相似文献   

20.
Porous composite cathodes including (La0.74Bi0.10Sr0.16)MnO3−δ (LBSM) and Bi1.4Er0.6O3 (ESB) were fabricated and characterized using AC impedance spectroscopy. In our earlier work, the growth and aggregation of ESB particles were found in LBSM–ESB composite cathodes. In this study, therefore, two approaches were used to restrain the growth and aggregation of ESB particles. First, the sintering temperature of the composite cathode was reduced by introducing a sintering function layer, which caused a 22% reduction in the initial polarization resistance (R), but the cathode polarization resistance decreased at a rate of 2.15 × 10−4 Ω cm2 h−1 at 700 °C during a period of 100 h. Second, nano-sized Gd-doped ceria powder (CGO) was added to the composite cathode system. Stability improvement was achieved at 10 vol% CGO, and the degradation rate at 700 °C was 4.01 × 10−5 Ω cm2 h−1 during a period of 100 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号