首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
地铁盾构隧道施工对邻近管线的影响分析   总被引:1,自引:0,他引:1  
为了获得地铁隧道盾构法施工对临近地下管线的变形和应力的影响规律,以大连地铁二号线某区间隧道工程为背景,利用FLAC3D软件对隧道盾构施工引发的地层变形所导致的管线变形、应力进行了精细模拟,得到双线隧道施工完成后横向地表沉降槽不符合叠加理论,存在少量差值,双线隧道贯通时最大沉降值为11.26 mm,盾构隧道地层体积损失率为1.46%,地表沉降槽宽度系数为0.81.按两条隧道互不影响沉降叠加,最大沉降值为11.93 mm;右线隧道贯通时,燃气管最大沉降值为10.1 mm,左线隧道贯通时,燃气管最大沉降值为11.4 mm,最大沉降位置向左有少量偏移.随着右线盾构掘进施工,污水管道沉降逐渐增大,最大沉降变形为5.45 mm,线隧道贯通后,污水管线最大沉降值为9.79 mm.整个过程两管均处于安全状态.  相似文献   

2.
以郑州市轨道交通5号线某区间盾构隧道开挖工程为例,采用FLAC3D数值模拟软件进行建模分析,将数值模拟软件得出的隧道开挖引起的地表沉降值与实际测量的数值进行对比,得到以下结论:隧道拱顶处沉降最大,拱底处隆起最大;研究断面的横向沉降均呈W形分布;断面一地表最大横向沉降值为14.6mm,对应的数值模拟得到的最大横向沉降值为14.2mm;断面二地表最大横向沉降值为7.6mm,对应数值模拟得到的最大横向沉降值为7.2mm,可知横断面沉降的实测值和数值模拟值吻合度较好,说明数值结果比较可靠。对于地表纵向沉降,开挖过程中,掌子面前方一定距离处地表形成隆起,这与盾构机与土体之间的摩擦有关,在开挖之后距离掌子面20m左右地表沉降基本趋于平稳,左右线的实测值与数值模拟值吻合度良好。断面二隧道穿越的粉质黏土厚度比较大,且自稳性较好,故断面二沉降要小于断面一的沉降,因此隧道开挖面处的地层特性对盾构开挖的稳定性十分重要。  相似文献   

3.
成都地铁4号线二期工程万年场站~东三环站区间为双线盾构隧道,区间盾构隧道下穿包括无砟轨道、有砟轨道及桩基础形式铁路桥的铁路群。以数值模拟为手段,采用Flac3D软件,建立盾构下穿铁路桥的三维有限差分模型,对盾构掘进中造成的地表沉降、周围土体变形及铁路桥墩的沉降变化进行了分析,评价了上部铁路桥的安全性,并提出了相应的安全控制措施。基于土体加固措施,对加固与不加固工况进行了对比分析。结果表明:铁路桥与盾构隧道间土体加固后,桩基最大水平位移和竖向沉降分别减少了58%和79%,桥墩沉降满足安全控制标准,盾构施工对铁路桥运营的影响在安全范围内。  相似文献   

4.
对大直径泥水平衡盾构在砂卵石地层、软土地层中施工引起的地表沉降进行分析研究。通过对隧道横向沉降影响区、纵向沉降、不同时段沉降等的分析研究,得出大直径泥水盾构在砂卵石地层、软土地层中施工引起的地表沉降规律。卵石层中、软土层中,大直径泥水盾构施工引起的地表沉降在横断面方向基本上均呈正态分布,但砂卵石地层中的主沉降区范围较软土地层中的要小,且沉降值较软土中的也小;在盾构通过、盾尾通过两阶段地表沉降量比较大,软土地层中工后沉降较明显。  相似文献   

5.
依托某市轨道交通九号线某区间工程,运用Midas GTS有限元分析软件建立数值分析模型,将整个隧道掘进过程分为10个施工阶段,计算施工过程中的地表沉降,分析不同掘进距离下地表的沉降量,并选取地表5个测点进行位移变形结果分析。结果表明:在隧道拱顶位置处产生沉降区域,在隧道拱底产生隆起现象,拱顶处的最大沉降值随着盾构掘进距离的增加而增大,盾构掘进到达地表监测点附近时,该监测点的地表沉降值变化速度较快。  相似文献   

6.
依托长沙地铁2号线区间穿越龙王港河堤地表沉降过大的工程案例,分析了沉降发生的原因及相应采取的工程治理措施。为研究治理方案的实际效果,采用有限元软件Plaxis对地层加固前后区间隧道穿越施工工况进行模拟,对周边土体位移、地表沉降、盾构管片弯矩的数值进行对比分析。结果表明:通过注浆加固提高盾构隧道覆土范围土体工程力学性能后,可以有效减低整个地层的位移及盾构管片弯矩数值。监测数值表明,对河堤进行注浆加固可以有效地防止地表过大沉降。  相似文献   

7.
盾构开挖侧穿桩基对既有桥梁会产生扰动影响。利用有限元软件MIIDAS-GTS,采用对隧道洞分步开挖过程的方法模拟杭州市地铁5号线盾构施工,通过模型研究盾构施工过程中桩土界面相对位移,以此利用侧摩阻力来表示相对位移产生的影响。在地铁盾构隧道施工中,桩土相对位移最大值均发生在靠近桩顶附近,最大值7.3mm。桩基侧摩阻力在桩长范围内呈现负摩阻力,土体沉降均大于桩基沉降。黏质黏土和淤泥质黏土的土层交界处产生最大负摩阻力,计算结果有助于评价桩身稳定安全性。  相似文献   

8.
在富水软弱地层中,如何预测及控制地层扰动引起的长期固结沉降一直是盾构隧道施工面临的重要问题之一。基于FEM-FDM水土完全耦合理论,利用同济曙光三维有限元软件,分析了珠海某隧道软土区段局部加固对盾构施工引起的土体工后长期固结沉降的影响规律。数值计算结果表明:地层及隧道拱顶长期沉降槽随埋深增大逐渐变深变窄;盾构隧道基底加固分别使地表及隧道拱顶的最大沉降量减小34.2%和27%,且使二者更快趋于稳定,但对隧道结构变形的影响并不明显;加固会使隧道竖向应力有所增大,但不会改变其沿隧道轴向的分布规律;有基底加固时隧道拱腰处的超孔隙水压力消散更快,使得固结沉降更快趋于稳定。  相似文献   

9.
以南京地铁玄武门—新模范马路区间隧道盾构施工工程为背景,使用FLAC3D软件在考虑盾构隧道施工中的开挖、排土、衬砌等步序的前提下,进行盾构隧道掘进施工对地层变形影响的三维数值模拟.结果表明,在盾构掘进施工过程中,地层沉降具有明显的时间效应;地表沉降量随之逐渐增大;地层横向沉降变形随着地层埋深的增加,最大沉降值逐渐增大,沉降槽宽度逐渐减小;地层沉降历时曲线呈现出反"S"形.  相似文献   

10.
为预测盾构双隧道施工周围土体的变形及衬砌结构管片应力规律,以石家庄地铁1号线07标段北宋—谈固站区间双线隧道为工程背景,在考虑各土层材料性质及盾构施工工艺的基础上,利用FLAC3D建立了盾构双隧道的三维精细数值模型,研究了盾构双隧道衬砌管片的应力规律,并与现场实际监测数据进行了对比分析.结果表明:盾构隧道开挖造成的地层沉降大致沿隧道轴线与水平线夹角45°向地表扩散.横向地表沉降的影响距离距隧道中心约为30m.随着隧道埋深增加,对应地表监测点位累计沉降值变小,与隧道埋深成反比对应关系.隧道附近土体的第一主应力存在应力集中现象,应力集中系数约为1.3.衬砌管片应力分布存在差异性,靠近双隧道共同扰动的管片侧的拉应力和剪切应力集中现象较为明显.衬砌管片横断面形变以"椭圆化"变形为主,兼有断面收缩变形.  相似文献   

11.
为了控制盾构近接施工区既有建筑物的沉降变形,以福州地铁某线下穿文化街区的隧道盾构施工为例,采取全过程分阶段风险控制措施,并建立其隧道盾构的数值仿真模型,分析盾构施工对建筑物和地表沉降的影响。模拟结果表明:盾构下穿建筑物的最大沉降为4.9 mm,地表最大沉降为5.5 mm,均满足规范要求。同时将数值模拟结果和现场监测结果进行比对,验证了数值模拟的可靠性。研究结果可为类似隧道盾构下穿既有建筑物的风险管理和控制提供参考。  相似文献   

12.
国内采用超大直径土压平衡盾构法施工属首次,以Ф14270mm超大直径土压平衡盾构为对象,对盾构穿越建筑物的风险进行评估,采用数值模拟方法比较加固前后浦江饭店基础沉降和水平位移以及隧道轴线地表沉降;穿越中采用FCEC法对建筑物进行超前保护,使建筑物沉降控制在10mm内;在盾构推进过程中对周边环境的影响从横向和纵向两方面进行分析;通过现场监测和理论计算对照,表明建筑物在盾构穿越过程中沉降控制良好,具有一定的工程参考意义。  相似文献   

13.
地铁施工过程中盾构下穿上部已支护的基坑,将会对其支护结构及周边土体产生影响作用,因此有必要在盾构下穿前采用数值模拟的方法进行基坑稳定性分析。采用FLAC~(3D)软件模拟盾构下穿基坑后,青岛滨海软土区土体和地下连续墙的受力和变形情况,分析不同的下穿深度对基坑的底板沉降造成的影响。研究表明,盾构下穿基坑后底板附近的横向位移较大并成一定角度斜向上对称扩展至地表面,这些部位施工时应注意加固。在一定范围内,基坑底板的沉降量随着盾构形心与地表之间的竖向距离的增大而减小。本项研究成果可以为盾构下穿基坑时土体和支护结构的变形控制以及选择盾构下穿的深度提供一定依据。  相似文献   

14.
以上海地铁9号线为工程背景,在现场实测的基础上,采用计算程序DBLEAVES对地铁循环荷载作用下隧道周边软黏土的动力响应特性进行了研究。研究表明:在地铁循环荷载作用下,隧道周边软黏土的沉降规律为绕隧道向外弧形扩散,沉降值越来越小,直至影响范围边界,地表沉降呈沉降槽形式发展;最大沉降发生在隧道正下方,通过拟合得出土体的最终沉降量为19.8 mm;加速度响应方面,其空间分布形式同沉降规律,隧道右下方土体内的加速度及其衰减速度均略大于右上方土体;在循环荷载加载初期,土体内的超孔隙水压力上升很快,几乎呈线性发展;随着循环次数的增加,逐渐趋于稳定并向边界消散;超孔隙水压力比土体的有效应力小得多,隧道下方土体在循环荷载作用下不会发生液化现象。  相似文献   

15.
对盾构隧道洞周土压力的变化规律进行了数值模拟,研究了不同盾尾空隙、不同直径、不同埋深时隧道洞周土压力的分布规律,分析了隧道正上方土体的应力路径,并对隧道洞周土体竖向位移随埋深的变化规律进行了探讨。结果表明:盾尾空隙小于20 cm时,开挖对竖向土压力的影响区在2.7倍隧道直径范围内,土压力拱主要产生在隧道上部2倍隧道直径范围内;根据隧道正上方不同位置处土体的应力路径,将该区划分为3个区段:1洞周松动区,2稳定的压力拱区域,3土拱效应不明显的区域;随着隧道埋深的减小,其正上方的地表下沉量逐渐增大,而地表沉降的影响范围逐渐减小。  相似文献   

16.
以某地铁盾构隧道穿越建筑物浅基础的工程项目为背景,采用有限元模拟的方法,分析了隧道下穿浅基础的偏心比、埋深对浅基础及地表土体变形的影响规律。结果表明:隧道从浅基础下通过时,浅基础沉降呈线性分布,沉降最大值的位置只与隧道偏心比有关,而偏心比和埋深均对沉降最大值的量值有影响;浅基础存在使得地表横向沉降槽宽度较天然地基小,且沉降槽分布的范围与隧道埋深、偏心比有关,其中偏心比的影响较明显;浅基础倾斜值的大小主要与隧道偏心比有关,偏心比为零时浅基础基本无倾斜。据研究得出的地基变形的大小、范围以及变形规律,在隧道施工过程中可以选择合适的施工控制措施,保证上部构筑物的正常、安全运行。  相似文献   

17.
通过4组离心试验,模拟相对深度(埋深-直径比)分别为1.3和2.0的隧道在砂质土层中施工,分析了土层与地表建筑的位移与变形规律;通过抽取模型隧道内部的液体模拟隧道施工导致的土层体积损失,并设计了2层铝制框架结构模型,利用粒子图像测速技术测量了隧道施工引起的土层与结构移动数据,分析了地表与建筑筏板基础的水平与垂直位移、深部土层的移动与剪切变形、框架结构剪切变形与分类,以及结构剪切变形的修正系数与相对抗剪刚度。研究结果表明:隧道相对深度从1.3增加到2.0时地表沉降槽宽度从3.4 m增加到5.6 m,地表建筑的最大沉降从32.3 mm增加到49.5 mm,但变形程度有所降低;隧道施工影响下地表框架结构的变形主要表现为剪切变形,弯曲变形所占比重可以忽略不计;隧道施工引起松砂土层发生收缩变形,导致地表土层体积损失率始终大于隧道体积损失率,且隧道越深,差异越大;较浅隧道试验中建筑筏板基础与土层间存在较大间隙(27 mm),而较深隧道间隙几乎为0,从而增大了建筑筏板基础对地表土体水平移动的约束范围;建筑的剪切变形修正系数随隧道体积损失率的增加逐渐降低,且浅隧道的变化速率更大;2种隧道相对深度的建筑...  相似文献   

18.
盾构法作为地铁隧道施工的一种主要施工方法已在我国得到了广泛的应用,由施工引起的地层移动和地表沉降是盾构隧道设计和施工中非常关注的问题。以广州地铁三号线某盾构区间的两条水平平行隧道为研究对象,运用三维有限差分法对盾构隧道施工引起的地层移动和地表沉降进行了较为系统的研究,得出了两条盾构隧道开挖面距离、注浆压力的大小对地表沉降的影响规律,取得了一些新的认识和具有实用价值的研究成果。  相似文献   

19.
以某地铁线机场延伸线盾构隧道下穿某机场停机坪为工程背景,通过二维数值模拟盾构施工过程,对地表沉降槽曲线特性进行了研究,同时计算了不同注浆压力值与地表最大沉降量的的关系。计算结果表明:单线开挖结束后,横断面的地表沉降近似呈现V型的正态分布曲线,盾构下穿对地表沉降的影响范围约为洞径的5倍,双线开挖结束后,地表沉降槽沿横断面方向近似呈现U型,注浆压力与地表沉降近似成反比关系。  相似文献   

20.
为研究盾构隧道施工对富水软弱底层的扰动影响,以大连地铁某标段盾构隧道施工为例,首先基于修正剑桥模型建立土体本构关系,利用Shell结构单元模拟盾构初衬;然后采用流固耦合方法研究土体固结过程对盾构开挖引起软弱地层扰动问题;最后根据仿真结果与现场实测数据,绘制地表沉降对比分析曲线,给出盾构施工引起地表沉降的动态变化趋势.结果表明:孔隙水在盾构开挖完成后仍持续向隧道方向渗透,并引起距隧道较近区域的扰动趋势大于周围较远区域.本研究对提高富水软弱地层条件下盾构施工过程建模的准确性和实效性、指导盾构施工具有指导作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号