首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
以壳聚糖凝胶为载体,戊二醛为交联剂固定β-D-半乳糖苷酶,对壳聚糖凝胶的制备条件及乳糖酶的固定化条件进行了研究,确定了乳糖酶固定的最佳条件为:2.5%壳聚糖与2%戊二醛、1.0mg/mL的溶液酶,(pH值为7.0)固定9h,酶活力回收率为61.05%  相似文献   

2.
改性磁性壳聚糖微球固定化乳糖酶   总被引:1,自引:0,他引:1  
通过反相悬浮聚合法,以甲基丙烯酸2-羟乙酯(HE-MA)与甲基丙烯酸缩水甘油酯(GMA)为单体,过硫酸铵为引发剂制备得到改性磁性壳聚糖微球。进一步以改性磁性壳聚糖微球为载体,通过吸附、共价结合以及戊二醛交联反应三方协同作用固定乳糖酶。对影响固定化的各种因素进行优化,确定固定化乳糖酶最适条件为:载体在0.1 mol/L、pH 7.0的磷酸缓冲液中充分溶胀后,按2.0 U/mg载体的添加量加入乳糖酶,4℃吸附3 h,再添加0.1%戊二醛交联4 h;最终所得的固定化乳糖酶活为685 U/g载体,酶活回收率为34.3%。固定化后的乳糖酶的pH稳定性和热稳定性都较游离酶有明显提高;连续操作10次后,固定化酶活仍保持在70%以上,具有良好的操作稳定性。  相似文献   

3.
目的:研究壳聚糖与海藻酸钠共混凝胶的制备条件、特性及其固定糖化酶的能力.方法:采用单因素和正交试验确定共混凝胶的最佳制备条件;以共混凝胶为栽体包埋固定糖化酶,用戊二醛进行交联,通过正交试验确定最佳固定条件.结果:壳聚糖-海藻酸钠溶液的质量分数为4%,且壳聚糖与海藻酸钠质量比为55%:45%,NaCl浓度为1.2 mol/L,60 ℃保温30 min后所得共混凝胶强度高达496.312g/cm2.当糖化酶与壳聚糖的质量比为1:8,NaCl浓度0.8 mol/L,CaCl,质量分数2%,戊二醛质量分数0.02%,交联6 h时,所得固定糖化酶活力高达1 078.69 U/g干胶,相对活力82.6%;最适作用温度65℃,比游离酶提高5℃;最适pH不变(pH 4.1);米氏常数Km=0.83mol/L;半衰期62d.结论:壳聚糖和海藻酸钠共混凝胶是固定糖化酶的良好载体.  相似文献   

4.
壳聚糖膜固定化β-D-半乳糖苷酶的研究   总被引:4,自引:0,他引:4  
以壳聚糖膜为栽体,戊二醛为变联荆制备固定化乳糖酶,筛选酶固定化的最优条件。结果显示:戊二醛浓度为2.5%,pH值为6,5,乳糖酶浓度为0.4mg/mL,变联时间12h,固定化12h时,获得了最佳的固定化效果。  相似文献   

5.
乳糖酶在海藻酸钙上的固定化研究   总被引:5,自引:0,他引:5  
以海藻酸钙为载体、戊二醛为交联剂,对乳糖酶进行固定化。研究了戊二醛浓度、给酶量及温度对酶固定化的影响,并对固定化酶酶促反应的最适pH、温度等进行了测定。结果表明,0.3%戊二醛,4%的海藻酸钠,在4℃条件下对30%的乳糖酶的固定化率较高。酶促反应特性测定结果表明,固定化后乳糖酶的稳定性增强,最适温度范围较非固定化乳糖酶大,最适pH不变。  相似文献   

6.
共固定化乳糖酶和葡萄糖异构酶的研究   总被引:1,自引:0,他引:1  
研究了明胶-戊二醛法在共固定化乳糖酶和葡萄糖异构酶中的应用,并与开孔明胶法、卡拉胶包埋法进行了比较.进一步研究pH、明胶质量浓度、前交联中戊二醛的体积分数和二次交联的时间对明胶-戊二醛法共固定乳糖酶和葡萄糖异构酶的影响.结果表明,共固定化的最佳条件为:pH8.6,明胶浓度27%(w/w),前交联戊二醛体积分数0.15%和二次交联时间10min.在此条件下共固定化,乳糖酶的活力回收率为30.85%,葡萄糖异构酶的活力回收率为83.48%.共固定化乳糖酶和葡萄糖异构酶用于制备乳果糖,间歇操作6批次后酶活力仍然保持在初始活力的75%以上.  相似文献   

7.
壳聚糖-戊二醛交联吸附法固定β-葡萄糖苷酶的研究   总被引:2,自引:0,他引:2  
刘颖  高晗  范婷婷 《食品科学》2008,29(5):315-318
将杏仁来源的β-葡萄糖苷酶采用吸附法固定在戊二醛交联的壳聚糖上,对固定化条件进行优化,得到最佳条件:采用pH5.5浓度为1.5%的戊二醛在25℃水浴中振荡吸附4h,固定5Uβ-葡萄糖苷酶在每克干壳聚糖上,活力回收率达27.34%.  相似文献   

8.
壳聚糖微球固定化葡萄糖氧化酶的研究   总被引:17,自引:1,他引:17  
以壳聚糖微球为载体,戊二醛为交联剂,固定葡萄糖氧化酶,对葡萄糖氧化酶的固定化条件及固定化酶的各种性质进行了研究,确定了酶固定的最佳条件为0.1g壳聚糖微球与5ml5%戊二醛交联,固定6mg葡萄糖氧化酶,在此条件下酶活力回收可达60%。固定化酶的最适温度为50℃,最适pH为6.0,通过Lineweaver-Burk作图,确定动力学参数Km值为18.3mmol/L,表观米氏常数较游离酶有所降低,固定化酶的热稳定性较游离酶明显提高,该固定化酶具有良好的操作及保存稳定性。  相似文献   

9.
壳聚糖膜固定化葡萄糖氧化酶的研究   总被引:2,自引:0,他引:2  
研究以壳聚糖膜为载体、戊二醛为交联剂,固定化葡萄糖氧化酶的最佳条件。结果表明,采用脱乙酰度为86.40%,分子量为1.288×106的壳聚糖制作壳聚糖膜,与浓度0.025%的戊二醛交联后做为载体,室温状态下,在pH为6.5、酶浓度为0.2mg/ml的酶液中固定12h,固定化酶活力最大。在此条件下,固定化酶活力为186.8U/cm2,相对活力78.69%,活力回收>40%。  相似文献   

10.
以戊二醛为交联剂,壳聚糖为载体,采用交联-吸附偶联法固定柚苷酶,通过单因素和正交试验优化确定最佳固定化工艺。结果表明,柚苷酶的最佳固定化条件为:以质量浓度为3.5g/100mL的壳聚糖制备的凝胶微球为载体,凝结剂NaOH质量浓度1.0g/100mL、戊二醛体积分数7.0%、交联时间2.0h、pH 4.0、酶液质量浓度2.0mg/mL、25℃时吸附交联3.0h,得到固定化酶最高酶比活力为7.37U/g;与游离酶相比而言,固定化酶最适pH值与最适反应温度均无明显变化;固定化酶在不同温度(40、50、60℃)条件下重复使用7次,相对酶活力仍能保持在70%、60%和50%以上。  相似文献   

11.
以壳聚糖凝胶颗粒为载体,采用共价键偶联法固定绿豆乳糖酶,研究壳聚糖固定化绿豆乳糖酶的酶学性质并对其进行水解牛乳中乳糖的初步应用研究。结果表明:固定化酶的热稳定性在4~55℃范围内;最适温度60℃;最适pH3.5;固定化酶的表观米氏常数Km 为0.04%,溶液酶米氏常数Km 为0.33%,是溶液酶米氏常数Km 的0.12 倍;固定化酶的操作半衰期为30d,较溶液酶长。用固定化酶制备填充床式反应器水解牛奶中乳糖,水解率可达60% 以上。  相似文献   

12.
几丁质固定化壳聚糖酶的研究   总被引:10,自引:0,他引:10  
曾嘉  郑连英 《食品科学》2001,22(10):21-24
以几丁质为载体,戊二醛为交联剂,固定壳聚糖酶,对壳聚糖酶的固定化条件、固定化酶的性质进行了研究,确定了酶固定的最佳条件为0.1克几丁质与5ml5%戊二醛交联,固定2mg壳聚糖酶,在此条件下酶活力回收可达70%。固定化酶的最适温度和pH分别为60℃和4.0,动力学参数Km值为17.66g/L。将固定化酶于70℃水浴保温150min,酶活力未见明显下降。该固定化酶具有良好的操作和保存稳定性。  相似文献   

13.
以壳聚糖微球为载体,戊二醛为交联剂,固定β-半乳糖苷酶对β-半乳糖苷酶的固定化条件及周定化酶的各种性质进行研究,确定酶固定的最适条件为:用pH6.5的P-E-M缓冲液浸泡10h,25℃壳聚糖微球与0.5%戊二醛交联12h以上,4℃下酶与壳聚塘微球固定12h以上,酶活力回收率可达67%.固定化酶的最适温度为40℃左右,最适pH7.0.通过双倒数法求回归方程,求得酶动力学参数Km值为0.613 mmol/ml.固定化酶稳定性好,可以重复使用.将该固定化酶应用于乳糖分解实验和作为柱层析介质连续分解乳糖,分批反应6批次,乳糖水解率保持在90%以上,连续水解20d,乳糖水解率仍然可保持在75%以上.  相似文献   

14.
采用海藻酸钠-壳聚糖作为载体对磷脂酶A2进行固定,以固定化酶的活力回收率为指标,通过单因素实验和响应面分析对固定化条件进行优化,最优固定化条件为:海藻酸钠浓度2.0%,壳聚糖浓度2.0%,钙离子浓度0.25mol/L,戊二醛质量百分浓度0.3%,交联时间7h,此时固定化酶活力回收率达到74.8%;对固定化酶酶学性质进行研究,其最适温度为55℃,最适pH为5.0。该固定化酶重复使用7次后活力可以保持54%以上。扫描电子显微镜(SEM)结果也显示海藻酸钠-壳聚糖能较好的固定磷脂酶A2。  相似文献   

15.
壳聚糖固定化超氧化物歧化酶的研究   总被引:1,自引:0,他引:1  
目的:研究壳聚糖固定化超氧化物歧化酶的酶学性质。方法:分别以不同方法对超氧化物歧化酶进行固定并比较其活力,对固定化方法进行相应的优化,对固定化超氧化物歧化酶进行酶学性质测定。结果:以壳聚糖为载体,戊二醛交联法制备固定化超氧化物歧化酶,优化条件下制备的固定化酶,所得固定化酶活力为330U/g,酶活回收率为58.33%,热稳定性和酸稳定性较游离酶有很大的提高,且具有良好的贮存稳定性,固定化酶可实现反复使用,提高了利用率。结论:壳聚糖-戊二醛交联法可用于制备性能较优的固定化超氧化物歧化酶。  相似文献   

16.
研究壳聚糖固定化超氧化物歧化酶的酶学性质。分别以不同方法对超氧化物歧化酶进行固定并比较其活力,对固定化方法进行相应的优化,对固定化超氧化物歧化酶进行酶学性质测定。结果表明,以壳聚糖为载体,戊二醛交联法制备固定化超氧化物歧化酶,优化条件下制备的固定化酶,所得壳聚糖酶粉活力为192U/g,酶活回收率为34%,热稳定性和酸碱稳定性较游离酶有很大的提高,且具有良好的贮存稳定性,固定化酶粉可实现反复使用,提高了利用率。壳聚糖-戊二醛交联法可用于制备性能较优的固定化超氧化物歧化酶。  相似文献   

17.
以多孔壳聚糖微球固定酵母蛋白酶,通过对戊二醛含量、吸附时间、固定化温度、pH进行了单因素试验及正交试验,以蛋白酶酶活回收率为评价指标,确定的固定化条件为戊二醛含量1.4%,吸附温度27 ℃,pH值为10,吸附时间24 h。在此最佳条件下,固定化酵母蛋白酶酶活回收率为68.8%。酶学性质分析结果表明,固定化酶最佳反应温度较游离酶升高10 ℃,最佳作用pH较游离酶向碱性方向偏移1个pH单位。因此,用多孔壳聚糖对酵母蛋白酶进行包埋可以提高蛋白酶活性。  相似文献   

18.
壳聚糖微球的制备及其对脂肪酶的固定化研究   总被引:1,自引:0,他引:1  
采用反相悬浮法制备壳聚糖微球,并以此作为载体固定了脂肪酶。对壳聚糖微球的制备条件、微球的性能及其固定化脂肪酶的条件进行了探讨,结果表明,壳聚糖微球成球效果最好的制备条件是壳聚糖溶液与分散相液体石蜡体积比为1∶2,吐温-80使用量为15mL,壳聚糖浓度为4%,所制得的壳聚糖微球具有良好的热稳定性、耐酸碱性和抗氧化性;壳聚糖微球固定化脂肪酶的最佳条件为戊二醛用量0.6mL,交联时间60min,加酶量1mg/g载体,pH值为7。采用壳聚糖微球固定化脂肪酶具有较高的酶活回收率,为60%  相似文献   

19.
以壳聚糖为栽体,戊二醛为交联剂,采用交联一吸附法对胰蛋白酶的固定化条件进行了初探.结果表明:酶用量、戊二醛浓度、pH值、温度等对壳聚糖微球固定化的胰蛋白酶活力有显著影响.最适固定化条件:壳聚糖0.125 g,酶用量14mg,交联剂质量分数0.2%,pH值为7.5,固定化温度35℃,交联时间2 h,吸附时间5 h.在此条件下酶活力回收率为76.57%.  相似文献   

20.
壳聚糖固定化木瓜蛋白酶提取牛蒡多糖的研究   总被引:2,自引:0,他引:2  
以壳聚糖为载体、戊二醛为交联剂固定化木瓜蛋白酶,从牛蒡中提取多糖,考察固定化工艺的选择、固定化酶提取牛蒡多糖的优化条件及固定化酶的稳定性。结果表明:壳聚糖固定化木瓜蛋白酶的最佳条件为:壳聚糖浓度2.5%,加酶量0.3g/g载体,时间6h,温度15℃,pH7.5,酶活力回收率38.98%。提取牛蒡多糖的最佳条件为:固液比1:20,pH6.5,温度60℃,时间8h,加酶量1.8g/g载体,多糖提取率11.04%。固定化酶重复使用五次,酶活力仍保持50%以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号