首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Creating collision-free trajectories for mobile robots, known as the path planning problem, is considered to be one of the basic problems in robotics. In case of multiple robotic systems, the complexity of such systems increases proportionally with the number of robots, due to the fact that all robots must act as one unit to complete one composite task, such as retaining a specific formation. The proposed path planner employs a combination of Cellular Automata (CA) and Ant Colony Optimization (ACO) techniques in order to create collision-free trajectories for every robot of a team while their formation is kept immutable. The method reacts with obstacle distribution changes and therefore can be used in dynamical or unknown environments, without the need of a priori knowledge of the space. The team is divided into subgroups and all the desired pathways are created with the combined use of a CA path planner and an ACO algorithm. In case of lack of pheromones, paths are created using the CA path planner. Compared to other methods, the proposed method can create accurate collision-free paths in real time with low complexity while the implemented system is completely autonomous. A simulation environment was created to test the effectiveness of the applied CA rules and ACO principles. Moreover, the proposed method was implemented in a system using a real world simulation environment, called Webots. The CA and ACO combined algorithm was applied to a team of multiple simulated robots without the interference of a central control. Simulation and experimental results indicate that accurate collision free paths could be created with low complexity, confirming the robustness of the method.  相似文献   

2.
The collision-free planning of motion is a fundamental problem for artificial intelligence applications in robotics. The ability to compute a continuous safe path for a robot in a given environment will make possible the development of task-level robot planning systems so that the implementation details and the particular robot motion sequence will be ignored by the programmer.A new approach to planning collision-free motions for general real-life six degrees of freedom (d.o.f.) manipulators is presented. It is based on a simple object model previously developed. The complexity of the general collision detection problem is reduced, and realistic collision-free paths are efficiently found onCS planes. A heuristic evaluation function with a real physical sense is introduced, and computational cost is reduced to the strictly necessary by selecting the most adequate level of representation. A general algorithm is defined for 6 d.o.f. robots that yields good results for actual robot models with complex design structures with the aid of various heuristic techniques. The problem of adaptive motion is also considered.  相似文献   

3.
张金学  李媛媛  掌明 《计算机仿真》2012,29(1):176-179,205
在自主移动机器人的许多应用中,路径规划技术顺序地设置一套分散的路径点来引导机器人以最短的时间从起始位置到达目标点。针对移动机器人路径规划问题,提出了一种非完整型机器人路径规划技术,该技术采用基本原子操纵方法来解决车型机器人路径规划问题,并采用平滑路径规划方法来产生更多的连续路径用以解决基本原子操纵技术在做路径规划时具有很不连续的缺点从而为机器人获得最优路径。仿真结果证明了该方法的有效性和实用性。  相似文献   

4.
Planning collision-free and smooth joint motion is crucial in robotic applications, such as welding, milling, and laser cutting. Kinematic redundancy exists when a six-axis industrial robot performs five-dimensional tasks, and there are infinite joint configurations for a six-axis industrial robot to realize a cutter location data of the tool path. The robot joint motion can be optimized by taking advantage of the kinematic redundancy, and the collision-free joint motion with minimum joint movement is determined as the optimal. However, most existing redundancy optimization methods do not fully exploit the redundancy of the six-axis industrial robots when they conduct five-dimensional tasks. In this paper, we present an optimization method to solve the problem of inverse kinematics for a six-axis industrial robot to synthesize the joint motion that follows a given tool path, while achieving smoothness and collision-free manipulation. B-spline is applied for the joint configuration interpolation, and the sum of the squares of the first, second, and third derivatives of the B-spline curves are adopted as the smoothness indicators. Besides, the oriented bounding boxes are adopted to simplify the shape of the robot joints, robot links, spindle unit, and fixtures to facilitate collision detections. Dijkstra's shortest path technique and Differential Evolution algorithm are combined to find the optimal joint motion efficiently and avoid getting into a local optimal solution. The proposed algorithm is validated by simulations on two six-axis industrial robots conducting five-axis flank milling tasks respectively.  相似文献   

5.
Dual-arm reconfigurable robot is a new type of robot. It can adapt to different tasks by changing its different end-effector modules which have standard connectors. Especially, in fast and flexible assembly, it is very important to research the collision-free planning of dual-arm reconfigurable robots. It is to find a continuous, collision-free path in an environment containing obstacles. A new approach to the real-time collision-free motion planning of dual-arm reconfigurable robots is used in the paper. This method is based on configuration space (C-Space). The method of configuration space and the concepts reachable manifold and contact manifold are successfully applied to the collision-free motion planning of dual-arm robot. The complexity of dual-arm robots’ collision-free planning will reduce to a search in a dispersed C-Space. With this algorithm, a real-time optimum path is found. And when the start point and the end point of the dual-arm robot are specified, the algorithm will successfully get the collision-free path real time. A verification of this algorithm is made in the dual-arm horizontal articulated robot SCARATES, and the simulation and experiment ascertain that the algorithm is feasible and effective.  相似文献   

6.
Complete coverage navigation (CCN) requires a special type of robot path planning, where the robots should pass every part of the workspace. CCN is an essential issue for cleaning robots and many other robotic applications. When robots work in unknown environments, map building is required for the robots to effectively cover the complete workspace. Real-time concurrent map building and complete coverage robot navigation are desirable for efficient performance in many applications. In this paper, a novel neural-dynamics-based approach is proposed for real-time map building and CCN of autoxnomous mobile robots in a completely unknown environment. The proposed model is compared with a triangular-cell-map-based complete coverage path planning method (Oh , 2004) that combines distance transform path planning, wall-following algorithm, and template-based technique. The proposed method does not need any templates, even in unknown environments. A local map composed of square or rectangular cells is created through the neural dynamics during the CCN with limited sensory information. From the measured sensory information, a map of the robot's immediate limited surroundings is dynamically built for the robot navigation. In addition, square and rectangular cell map representations are proposed for real-time map building and CCN. Comparison studies of the proposed approach with the triangular-cell-map-based complete coverage path planning approach show that the proposed method is capable of planning more reasonable and shorter collision-free complete coverage paths in unknown environments.   相似文献   

7.
A neural network approach to complete coverage path planning.   总被引:10,自引:0,他引:10  
Complete coverage path planning requires the robot path to cover every part of the workspace, which is an essential issue in cleaning robots and many other robotic applications such as vacuum robots, painter robots, land mine detectors, lawn mowers, automated harvesters, and window cleaners. In this paper, a novel neural network approach is proposed for complete coverage path planning with obstacle avoidance of cleaning robots in nonstationary environments. The dynamics of each neuron in the topologically organized neural network is characterized by a shunting equation derived from Hodgkin and Huxley's (1952) membrane equation. There are only local lateral connections among neurons. The robot path is autonomously generated from the dynamic activity landscape of the neural network and the previous robot location. The proposed model algorithm is computationally simple. Simulation results show that the proposed model is capable of planning collision-free complete coverage robot paths.  相似文献   

8.
This study proposes a new approach for solving the problem of autonomous movement of robots in environments that contain both static and dynamic obstacles. The purpose of this research is to provide mobile robots a collision-free trajectory within an uncertain workspace which contains both stationary and moving entities. The developed solution uses Q-learning and a neural network planner to solve path planning problems. The algorithm presented proves to be effective in navigation scenarios where global information is available. The speed of the robot can be set prior to the computation of the trajectory, which provides a great advantage in time-constrained applications. The solution is deployed in both Virtual Reality (VR) for easier visualization and safer testing activities, and on a real mobile robot for experimental validation. The algorithm is compared with Powerbot's ARNL proprietary navigation algorithm. Results show that the proposed solution has a good conversion rate computed at a satisfying speed.  相似文献   

9.
The wide potential applications of humanoid robots require that the robots can walk in complex environments and overcome various obstacles. To this end, we address the problem of humanoid robots stepping over obstacles in this paper. We focus on two aspects, which are feasibility analysis and motion planning. The former determines whether a robot can step over a given obstacle, and the latter discusses how to step over, if feasible, by planning appropriate motions for the robot. We systematically examine both of these aspects. In the feasibility analysis, using an optimization technique, we cast the problem into global optimization models with nonlinear constraints, including collision-free and balance constraints. The solutions to the optimization models yield answers to the possibility of stepping over obstacles under some assumptions. The presented approach for feasibility provides not only a priori knowledge and a database to implement stepping over obstacles, but also a tool to evaluate and compare the mobility of humanoid robots. In motion planning, we present an algorithm to generate suitable trajectories of the feet and the waist of the robot using heuristic methodology, based on the results of the feasibility analysis. We decompose the body motion of the robot into two parts, corresponding to the lower body and upper body of the robot, to meet the collision-free and balance constraints. This novel planning method is adaptive to obstacle sizes, and is, hence, oriented to autonomous stepping over by humanoid robots guided by vision or other range finders. Its effectiveness is verified by simulations and experiments on our humanoid platform HRP-2.  相似文献   

10.
Dynamically-Stable Motion Planning for Humanoid Robots   总被引:9,自引:0,他引:9  
We present an approach to path planning for humanoid robots that computes dynamically-stable, collision-free trajectories from full-body posture goals. Given a geometric model of the environment and a statically-stable desired posture, we search the configuration space of the robot for a collision-free path that simultaneously satisfies dynamic balance constraints. We adapt existing randomized path planning techniques by imposing balance constraints on incremental search motions in order to maintain the overall dynamic stability of the final path. A dynamics filtering function that constrains the ZMP (zero moment point) trajectory is used as a post-processing step to transform statically-stable, collision-free paths into dynamically-stable, collision-free trajectories for the entire body. Although we have focused our experiments on biped robots with a humanoid shape, the method generally applies to any robot subject to balance constraints (legged or not). The algorithm is presented along with computed examples using both simulated and real humanoid robots.  相似文献   

11.
Reinforcement learning (RL) is a popular method for solving the path planning problem of autonomous mobile robots in unknown environments. However, the primary difficulty faced by learning robots using the RL method is that they learn too slowly in obstacle-dense environments. To more efficiently solve the path planning problem of autonomous mobile robots in such environments, this paper presents a novel approach in which the robot’s learning process is divided into two phases. The first one is to accelerate the learning process for obtaining an optimal policy by developing the well-known Dyna-Q algorithm that trains the robot in learning actions for avoiding obstacles when following the vector direction. In this phase, the robot’s position is represented as a uniform grid. At each time step, the robot performs an action to move to one of its eight adjacent cells, so the path obtained from the optimal policy may be longer than the true shortest path. The second one is to train the robot in learning a collision-free smooth path for decreasing the number of the heading changes of the robot. The simulation results show that the proposed approach is efficient for the path planning problem of autonomous mobile robots in unknown environments with dense obstacles.  相似文献   

12.
This paper deals with a new approach based on Q-learning for solving the problem of mobile robot path planning in complex unknown static environments.As a computational approach to learning through interaction with the environment,reinforcement learning algorithms have been widely used for intelligent robot control,especially in the field of autonomous mobile robots.However,the learning process is slow and cumbersome.For practical applications,rapid rates of convergence are required.Aiming at the problem of slow convergence and long learning time for Q-learning based mobile robot path planning,a state-chain sequential feedback Q-learning algorithm is proposed for quickly searching for the optimal path of mobile robots in complex unknown static environments.The state chain is built during the searching process.After one action is chosen and the reward is received,the Q-values of the state-action pairs on the previously built state chain are sequentially updated with one-step Q-learning.With the increasing number of Q-values updated after one action,the number of actual steps for convergence decreases and thus,the learning time decreases,where a step is a state transition.Extensive simulations validate the efficiency of the newly proposed approach for mobile robot path planning in complex environments.The results show that the new approach has a high convergence speed and that the robot can find the collision-free optimal path in complex unknown static environments with much shorter time,compared with the one-step Q-learning algorithm and the Q(λ)-learning algorithm.  相似文献   

13.
A recent development in robotics is the increase of intelligence in robots. One of the research fields is to enable robots to autonomously avoid collisions with surrounding objects. This article presents an efficient method for planning collision-free paths for an articulated robot that is surrounded by polyhedral objects. The algorithm plans a hypothetical Archimedes's spiral path from the initial position to the goal position. When a collision among the arms and obstacles is detected, the hypothetical path will be modified to avoid the collision. The algorithm applies geometric methods to determine the upper and lower bounds of the reachable area of the wrist and then determines a collision-free path point on that reachable area. Because the equations, which represent the upper and lower bounds, are simple, the algorithm can rapidly determine a collision-free path. Moreover, with minor modifications, this path planning algorithm can also be applied to other robots such as spherical, cylindrical, and Cartesian types of robots. © 1995 John Wiley & Sons, Inc.  相似文献   

14.
移动机器人是目前科学技术发展最活跃的领域之一,在工业、农业、医疗等行业广泛应用,还在城市安全、国防和空间探测领域得到更广的应用。要实现机器人在未知环境下自主作业,具备实时、自主、识别高风险区域和风险管理的能力,路径规划是一个重要环节,规划水平的高低,在一定程度上标志着机器人的智能水平,因此研究机器人路径规划对提高机器人的智能化水平、加快工程化应用具有重要的意义。文章重点分别从全局路径规划和局部路径规划角度对机器人路径规划的研究方法进行了分析与总结,同时分析研究了基于仿生学的智能算法的遗传算法、蚁群算法、粒子群算法,最后展望了移动机器人的未来发展趋势。  相似文献   

15.
Collision-free path planning for an industrial robot in configuration space requires mapping obstacles from robot‘s workspace into its configuration space.In this paper,an approach to real-time collision-free path planning for robots in configuration space is presented.Obstacle mapping is carried out by fundamental obstacles defined in the workspace and their images in the configuration space.In order to avoid dealing with unimportant parts of the configuration space that do not affect searching a collision-free path between starting and goal configurations,we construct a free subspace by slice configuration obstacles.In this free subspace,the collision-free path is determined by the A^* algorithm.Finally,graphical simulations show the effectiveness of the proposed approach.  相似文献   

16.
In this paper, the exploration and map-building of unknown environment by a team of mobile robots is intensively investigated. A new exploration technique is proposed to increase the exploration efficiency. In particular, the new technique has two main objectives: firstly, it aims at reducing the exploration time and the traveled distance by reducing the overlap which takes place when a certain area in the environment is explored by more than one robot. To achieve this, a new procedure to assign the next target location for each individual robot is proposed. And secondly, it aims at reducing computations complexity required by target selection and path planning tasks. More importantly, the proposed technique obviates the need for environment segmentation complex procedures which is adopted in some previous important research works. The new technique is intensively tested with different environments. The results showed the effectiveness of the proposed technique.  相似文献   

17.
This paper deals with the real-time path planning of an autonomous mobile robot in two-dimensional, unknown, dynamic multiple robot navigation space. In particular, a collision-free navigation path planning strategy is presented in real time by using a heuristichuman like approach. The heuristic scheme used here is based on thetrial and error methodology with the attempt to minimize the cost of the navigation efforts, when time plays a significant role. Past built-up navigation experience and current extracted information from the surrounding environment are used for the detection of other moving objects (robots) in the same navigation environment. Moreover, the determination of asecure navigation path is supported by a set of generic traffic priority rules followed by the autonomous robots moving in the same environment. Simulated results for two moving objects in the same navigation space are also presented.  相似文献   

18.
In this paper a case study of the cooperation of a strongly heterogeneous autonomous robot team, composed of a highly articulated humanoid robot and a wheeled robot with largely complementing and some redundant abilities is presented. By combining strongly heterogeneous robots the diversity of achievable tasks increases as the variety of sensing and motion abilities of the robot system is extended, compared to a usually considered team of homogeneous robots. A number of methodologies and technologies required in order to achieve the long-term goal of cooperation of heterogeneous autonomous robots are discussed, including modeling tasks and robot abilities, task assignment and redistribution, robot behavior modeling and programming, robot middleware and robot simulation. Example solutions and their application to the cooperation of autonomous wheeled and humanoid robots are presented in this case study. The scenario describes a tightly coupled cooperative task, where the humanoid robot and the wheeled robot track a moving ball, which is to be approached and kicked by the humanoid robot into a goal. The task can be fulfilled successfully by combining the abilities of both robots.  相似文献   

19.
许维健  郑文波 《机器人》1990,12(5):40-45
本文应用在障碍时变工作空间中把固定障碍和时变障碍分解的思想.首先就固定障碍问题,为机器人规划一条无碰撞路径,然后通过规划机器人的速度来达到避开活动障碍的目的.本文接着提出在时间-路径空间中以忽略可动障碍时机器人的运动策略为基准策略,根据障碍约束和机器人速度或加速度约束,用有理二次函数来规划机器人避开可动障碍的运动策略.  相似文献   

20.
室外自主移动机器人AMOR的导航技术   总被引:1,自引:1,他引:0  
在非结构化环境,移动机器人行驶运动规划和自主导航是非常挑战性的问题。基于实时的动态栅格地图,提出了一个快速的而又实效的轨迹规划算法,实现机器人在室外环境的无碰撞运动导航。AMOR是自主研发的室外运动移动机器人,它在2007年欧洲C-ELROB大赛中赢得了野外自主侦察比赛的冠军。它装备了SICK的激光雷达,用来获取机器人运动前方的障碍物体信息,建立实时动态的环境地图。以A*框架为基础的改造算法,能够在众多的路径中快速地找到最佳的安全行驶路径,实现可靠的自主导航。所有的测试和比赛结果表明所提方案是可行的、有效的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号