共查询到19条相似文献,搜索用时 62 毫秒
1.
双足步行机器人的步态规划 总被引:5,自引:0,他引:5
主要研究了双足步行机器人的基本步态的建立过程,进行了参数化处理,提出了一种简单可行的步态规划方法,并对数据结果进行了仿真验证。仿真及试验结果表明,该文给出的方法能实现不同步速的连续动态步行。通过标准步态数据的建立,为实时步态规划校正和在线控制补偿算法奠定了基础。 相似文献
2.
一种双足步行机器人的步态规划方法 总被引:14,自引:0,他引:14
本文介绍了一种双足步行机器人的步态规划方法,以前向运动为例,详细介绍了先分阶段规划然后合成的方法,并讨论了行走过程中的冲击振动问题及减振措施,实验及仿真结果验证了这一规划方法的有效性。 相似文献
3.
针对双足机器人动态步行生成关节运动轨迹复杂问题,提出了一种简单直观的实时步态生成方案。建立了平面五杆双足机器人动力学模型,通过模仿人类步行主要运动特征并根据双足机器人动态步行双腿姿态变化的要求,将动态步行复杂任务分解为顺序执行的四个过程,在关节空间相对坐标系下设计了躯干运动模式、摆动腿和支撑腿动作及步行速度调整模式,结合当前步行控制结果反馈实时产生稳定的关节运动轨迹。仿真实验验证了该方法的有效性,简单易实现。 相似文献
4.
5.
小型双足步行机器人的步态规划 总被引:1,自引:0,他引:1
为了解决双足步行机器人的步态控制,实现机器人稳定步行.为加强机器人的行走稳定性和优化步态过程,通过构造机器人行走过程中应满足的约束条件,规划机器人行走时的基本姿态及重心轨迹.根据规划的行走姿态及轨迹建立运动学方程,求解方程得到机器人各关节的运动轨迹.通过Matlab软件进行对运动轨迹模型的仿真,仿真得到的结果与设想的结果一致,证明步行得到平滑的关节轨迹是平稳的,并验证了方法的可行性. 相似文献
6.
7.
8.
针对双足机器人步行控制器的设计问题,基于生物学启发原理,提出一种基于中枢模式发生器(CPG)与稳定性分析相结合的多层次结构控制器设计方法。分析机器人的步行运动,给出双足运动描述。基于CPG理论设计多层次结构的步行控制器,应用极限环理论方法分析运动稳定性。在保证步行稳定的前提下,所提出的控制方法具有结构简单、通用性好、方便在线平滑修正等优点,步行仿真实验验证了所提出算法的有效性。 相似文献
9.
对双足步行机器人用Solidworks进行了三维造型,通过利用Solidworks中motion模块对质心在Z轴方向的位移波动范围和运动轨迹进行分析,进而对腿部长短设计进行比较,并在此基础上提出了一种稳定性试验研究方案,为双足机器人稳定性的研究提供了一种新方法. 相似文献
10.
针对现有的预测控制生成步行模式方法中忽略了参数间关系和参数取值范围的问题进行探讨.预测控制通过控制质心运动生成步行模式以实现ZMP目标轨迹跟踪,根据预测控制器模型研究参数间的关系,并通过极点分析讨论其取值范围,提出关键参数在容许取值范围内,可以保证系统的稳定性,并生成满足稳定步行的质心运动.通过仿真实验分析了在存在扰动情况下,关键参数取适当值,能够生成稳定的步行模式. 相似文献
11.
12.
13.
14.
五杆四驱动平面双足机器人动态步态规划与非线性控制 总被引:1,自引:0,他引:1
以五杆四驱动的平面双足步行机器人为对象,研究了其动态步行的时不变步态规划和限定时间的非线性控制策略.揭示了其模型的欠驱动和完全驱动的混杂和非光滑动力学特性,推导了其碰撞模型.基于虚拟约束的概念,提出时不变步态的输出函数解析设计方法,设计了反馈线性化控制器,将系统转化为双积分环节.然后采用限定时间控制器在一步内零化输出函数.仿真实验表明,动态步行趋于一个稳定的极限环,实现了规划的行走模式,验证了该方法的有效性. 相似文献
15.
Robust Sliding-mode Control of Nine-link Biped Robot Walking 总被引:4,自引:0,他引:4
Spyros G. Tzafestas Thanassis E. Krikochoritis Costas S. Tzafestas 《Journal of Intelligent and Robotic Systems》1997,20(2-4):375-402
A nine-link planar biped robot model is considered which, in addition tothe main links (i.e., legs, thighs and trunk), includes a two-segment foot.First, a continuous walking pattern of the biped on a flat terrain issynthesized, and the corresponding desired trajectories of the robot jointsare calculated. Next, the kinematic and dynamic equations that describe itslocomotion during the various walking phases are briefly presented. Finally,a nonlinear robust control approach is followed, motivated by the fact thatthe control which has to guarantee the stability of the biped robot musttake into account its exact nonlinear dynamics. However, an accurate modelof the biped robot is not available in practice, due to the existence ofuncertainties of various kinds such as unmodeled dynamics and parameterinaccuracies. Therefore, under the assumption that the estimation error onthe unknown (probably time-varying) parameters is bounded by a givenfunction, a sliding-mode controller is applied, which provides a successfulway to preserve stability and achieve good performance, despite the presenceof strong modeling imprecisions or uncertainties. The paper includes a setof representative simulation results that demonstrate the very good behaviorof the sliding-mode robust biped controller. 相似文献
16.
17.
18.
19.
在双足机器人跨越迎面而来的动态障碍物的问题中,由于障碍物的高度,和速度是不可预测等因素,机器人的迈步步长和迈步高度决定了其能否实现成功跨越.介绍一种双足机器人步态规划方法,应用模糊Q学习算法对迈步高度进行学习,将迈步的起始点、落点和迈步高度作为特征点,利用三次样条对特征点进行插值得到摆动腿运动轨迹,最后通过摆动角间的几何关系得出各关节处摆动角的变化规律,控制机器人跨越动态障碍物.仿真结果表明,通过进行的步态规划,机器人可以成功跨越动态障碍物,并且各关节处的摆动角变化曲线平缓无畸变. 相似文献