首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hollow fiber-protected liquid-phase microextraction of triazine herbicides   总被引:7,自引:0,他引:7  
A new microextraction technique termed hollow fiber-protected liquid-phase microextraction (LPME) was developed. Triazines were employed as model compounds to assess the extraction procedure and were determined by gas chromatography/mass spectrometry. Toluene functioned as both the extraction solvent and the impregnation solvent. Some important extraction parameters, such as effect of salt, agitation, pH, and exposure time were optimized. The new method provided good average enrichment factors of > 150 for eight analytes, good repeatability (RSDs <3.50%, n = 7), and good linearity (r2 > or = 0.9995) for spiked deionized water samples. The limits of detection (LODs) were in the range of 0.007-0.063 microg/L (S/N = 3) under selected ion monitoring mode. In addition to enrichment, hollow fiber-protected LPME also served as a technique for sample cleanup because of the selectivity of the membrane, which prevented large molecules and extraneous materials, such as humic acids in solution, from being extracted. The utilization of this procedure in the extraction of a slurry sample (mixture of soil and water) also gave good precision (RSDs <5.00%, n = 3) and LODs (0.04-0.18 microg/L, S/N = 3). Finally, the comparison of the new method with the static solvent drop LPME and solid-phase microextraction was performed. The results demonstrated that hollow fiber-protected LPME was a fast, accurate, and stable sample pretreatment method that gave very good enrichment factors for the extraction of triazine herbicides from aqueous or slurry samples.  相似文献   

2.
Zhao L  Lee HK 《Analytical chemistry》2002,74(11):2486-2492
Two modes of liquid-phase microextraction (LPME) combined with hollow fiber (HF) were developed for gas chromatography/mass spectrometry (GC/MS). Both methodologies, that is, static LPME with HF and dynamic LPME with HF, involved the use of a small volume of organic solvent impregnated in the hollow fiber, which was held by the needle of a conventional GC syringe. In static LPME/HF, the hollow fiber impregnated with solvent was immersed in the aqueous sample, and the extraction processed under stirring; in dynamic LPME/HF, the solvent was repeatedly withdrawn into and discharged from the hollow fiber by a syringe pump. This is believed to be the first reported instance of a semiautomated liquid microextraction procedure. The performance of the two techniques was demonstrated in the analysis of two PAH compounds in an aqueous sample. Static LPME/HF provided approximately 35-fold enrichment in 10 min and good reproducibility (approximately 4%). Dynamic LPME/HF could provide higher enrichment (approximately 75-fold) in 10 min and even better reproducibility (approximately 3%). Both methods allow the direct transfer of extracted analytes to a GC/MS system for analysis.  相似文献   

3.
Analysis of polar acidic herbicides has traditionally presented a challenge because of their strong adsorption to and ionic interactions with soil. One approach which has been successful for extraction of these polar compounds from soil is supercritical fluid extraction (SFE) coupled with in situ derivatization. This technique involves the addition of common derivatization reagents directly into the extraction chamber, where the acid herbicides are derivitized to extractable esters or ethers. This study describes the application of an in situ derivatization technique to pressurized fluid extraction (PFE) for the herbicides 2,4-D, 2,4,5-T, dicamba, silvex, trichlopyr, and bentazone. The efficiency of in situ derivatization PFE for these analytes is compared with a conventional basic extraction method followed by ex situ derivatization. The variables of temperature, pressure, static extraction time, and derivatization-reagent amount were optimized for recovery of these analytes from soil. Average recovery for these six analytes was 107% for in situ derivatization PFE from spiked sand, 93% for the same method from a high-concentration spiked soil (50 mg/kg), and 68% for the optimized in situ derivatization PFE method from low-concentration soil (0.5 mg/kg). The in situ derivatization PFE method has substantial advantages of simplicity of methodology and reduction in extraction time compared with the conventional technique. A second in situ derivatization PFE strategy was investigated using sodium EDTA in the extraction chamber for the extraction of 2,4-D from soil. Preliminary results demonstrate improved recovery with the use of Na4EDTA. Extraction efficiency of PFE for nonpolar organochlorine insecticides and slightly polar triazine herbicides from soil is also presented and compared with that of Soxhlet extraction.  相似文献   

4.
A solid-phase microextraction (SPME) procedure for the simultaneous determination of volatile alkanethiols (i.e., methane-, ethane-, propanethiol) and dihydrogen sulfide in aqueous samples as stable thioethers followed by GC/MS determination was developed. Accordingly, N-ethylmaleimide as derivatization reagent in the aqueous phase was used for the first time, improving the analyte stability and method sensitivity in comparison to the determination of free forms. Thus, pH of the aqueous medium, reaction time, and derivatization reagent concentration have been evaluated, and the main parameters affecting the SPME process (i.e., coating selection, extraction mode and time profile, extraction and desorption temperatures) optimized. At the selected derivatization and extraction conditions, the proposed method provided no matrix effect either in the derivatization reaction or in the microextraction steps. RSD values were lower than 11% and LODs from 0.74 to 5.2 ng L(-1). The developed procedure was successfully applied to different water and wastewater samples, where dihydrogen sulfide and some of the target alkanethiols were identified at low-microgram per liter concentrations.  相似文献   

5.
Li N  Lee HK 《Analytical chemistry》2000,72(14):3077-3084
The newly established enrichment technique, dynamic ion-exchange solid-phase extraction (DIE-SPE), was studied for sample preparation for GC/MS analysis of 16 acidic herbicides in environmental waters. C18 bonded silica was the solid-phase material used. The optimal sample pH was weakly acidic to neutral. However, for common tap water and surface water, which run pH 6-9, all the acidic herbicides except for Chloramben could be effectively extracted from a sample of 1,000-mL volume without pH adjustment. The humic acid could be concurrently extracted from water, but most of it was separated from the sample by using 3 mL of 10% methanol in acetone as the eluent, which would completely elute the analytes and leave a large part of the humic acid on the cartridge. The selective elution reduced the interference of humic acid and made the DIE-SPE an effective approach for the analysis of the acidic herbicides in surface water. Comparing DIE-SPE with conventional reversed-phase SPE (RP-SPE), the former gave higher recoveries for the acidic herbicides and was less affected by sample matrixes. A tandem-cartridge system combining RP- and DIE-SPE in sequence was set up for the simultaneous isolation of the acidic herbicides and removal of the interfering substances. Despite some minimal retention on the upper RP-SPE cartridge, most of the acidic herbicides could be extracted on the lower DIE-SPE cartridge with recovery over 80% except for Chloramben (50%), fenoprop (73%), MCPB (67%), and 2,4-DB (70%) when a 500-mL aqueous sample of pH 9.5 was percolated through the tandem-cartridge system. The effectiveness of the system in removing the long carbon chain fatty acids as well as the basic and neutral organic interfering substances from the sample was also demonstrated.  相似文献   

6.
Lee J  Lee HK 《Analytical chemistry》2011,83(17):6856-6861
A new fully automated dynamic in-syringe liquid-phase microextraction (LPME) and on-column derivatization approach, with gas chromatography/mass spectrometric (GC/MS) analysis, was developed to determine carbamate pesticides from water samples. With the use of a CTC CombiPal autosampler and its associated Cycle Composer software, a sample preparation-GC/MS method was enabled that allowed sample extraction, extract injection, and analyte derivatization to be carried out completely automatically. Optimization of extraction parameters was carried out by orthogonal array design which required a minimum of 16 experiments; the entire set of experiments was performed completely automatically and consecutively without any human intervention. Low limits of detection ranging from 0.05 to 0.1 μg/L were achieved for the carbamates. Effective enrichment of the analytes at a low concentration of 0.01 mg/L was also achieved (enrichment factors of between 57 and 138). The precision of the optimized method was satisfactory, with relative standard deviations of <6.0% (n = 6). High relative recoveries of between 81 and 125% were obtained when the method was applied to the analysis of real water samples, indicating that the sample matrix had little effect on the developed method. This automated dynamic in-syringe LPME approach demonstrated the feasibility of a complete analytical system comprising sample preparation and GC/MS that might be operated onsite, fully automatically without human intervention.  相似文献   

7.
We evaluated the feasibility of extracting selectively and rapidly herbicide residues in soils by hot water and collecting analytes with a Carbograph 4 solid-phase extraction (SPE) cartridge set on-line with the extraction cell. Phenoxy acid herbicides and those nonacidic and acidic herbicides which are often used in combination with phenoxy acids were selected for this study. Five different soil samples were fortified with target compounds at levels of 100 and 10 ng/g (30 ng/g of clopyralid and picloram) by following a procedure able to mimic weathered soils. Herbicides were extracted with water at 90 °C and collected on-line by the SPE cartridge. After the cartridge was disconnected from the extraction apparatus, analytes were recovered by stepwise elution to separate nonacidic herbicides from acidic ones. The two final extracts were analyzed by liquid chromatography/mass spectrometry with an electrospray ion source. At the lowest spike level considered, analyte recoveries ranged between 81 and 93%, except those for 2,4-DB and MCPB, which were 63%. For 16 herbicides out of 18, the ANOVA test showed recoveries were not dependent on the type of soil. The method detection limit was in the 1.7-10 ng/g range. For the analytes considered, method comparison showed this extraction method was overall more efficient than Soxhlet and sonication extraction techniques.  相似文献   

8.
A solid-phase microextraction GC/MS method for the trace determination of a wide variety of polar aromatic amines in aqueous samples was developed. Prior to extraction the analytes were derivatized directly in the aqueous solution by diazotation and subsequent iodination in a one-pot reaction. The derivatives were extracted by direct-SPME using a PDMS/DVB fiber and analyzed by GC/MS in the full-scan mode. By diazotation/iodination, the polarity of the analytes was significantly decreased and as a consequence extraction yields were dramatically improved. The derivatization proved to be suitable for strongly deactivated aromatic amines and even the very polar diamino compounds can efficiently be enriched after derivatization. We investigated 18 anilines comprising a wide range of functional groups, which could be determined simultaneously. The method was thoroughly validated, and the precision at a concentration of 0.5 microg/L was 3.8-11% relative standard deviation for nonnitrated analytes using aniline-d(5) as internal standard and 3.7-10% for nitroaromatic amines without internal standard. The in situ derivatization/SPME/GC/MS method was calibrated over the whole analytical procedure and was linear over 2 orders of magnitude. Using 10-mL samples, detection limits of 2-13 ng/L were achieved for 15 of the 18 analytes. For two aminodinitrotoluene isomers and a diaminonitrotoluene, detection limits ranged from 27 to 38 ng/L. By allowing quantification at the 0.1 microg/L level, analysis of all target compounds meets EU drinking water regulations. The method provides high sensitivity, robustness, and high sample throughput by automation. Finally, the method was applied to various real water samples and in wastewater from a former ammunition plant the contents of several aromatic amines were quantified.  相似文献   

9.
Ding WH  Tsai PC 《Analytical chemistry》2003,75(8):1792-1797
This work describes a modified method to analyze alkyltrimethylammonium chlorides (ATMACs) in river water samples. The proposed method involves adding solid potassium iodide to water sample (pH adjusted to 10.0) as a counterion to enhance the extraction of ATMAC residues by dichloromethane liquid-liquid extraction. The iodide-ATMA+ ion pairs were demethylated to their corresponding nonionic alkyldimethylamines (ADMAs) by thermal decomposition in a GC injection port. The corresponding ADMAs were then identified and quantitated by gas chromatography/ion trap mass spectrometry (GC/MS) in electron impact and low-pressure positive ion chemical ionization (PICI) modes. A relatively high abundance of ADMAs was detected at a demethylation temperature above 300 degrees C in the injection port. Experimental results indicate that the proposed method is precise and sensitive in ATMACs analysis and allows quantitation at < or = 0.01 microg/L in 500 mL of the water samples. The enhanced selectivity of quasi-molecular ion chromatograms of C12-C18-ADMA, obtained using methanol PICI-MS, enables ATMAC residues to be identified at trace levels in environmental samples. Recovery of the ATMACs in various spiked water samples ranged from 70 to 94% while RSD ranged from 3 to 12%. The concentrations of total measured ATMAC residues in river water samples ranged from nondetectable to 1.24 microg/L.  相似文献   

10.
Meyer A  Raba C  Fischer K 《Analytical chemistry》2001,73(11):2377-2382
A new, selective, and sensitive ion-pair RP-HPLC method for the simultaneous determination of three classes of natural organic compounds, i.e., carbohydrates, amino sugars, and uronic acids, in environmental samples is presented. p-Aminobenzoic acid is used for precolumn derivatization of the analytes, enabling fluorescence (lambda(ex) 313 nm, lambda(em) 358 nm) or photometric detection (303 nm). The dependence of the derivatization yield on the reaction conditions is examined. Derivatives of lactose, galactose, glucose, mannose, xylose, arabinose, galacturonic acid, glucuronic acid, N-acetylglucosamine, and glycerinealdehyde were separated on a RP-C18 column with hydrophilic end capping within 35 min, applying TBAHSO4 as the ion-pair reagent. The concentration detection limits range between 20 and 30 microg L(-1) ((1-2) x 10(-7) M) for fluorescence detection and between 30 and 75 microg L(-1) for UV detection. A good linearity is achieved in the concentration range from 50 microg L(-1) to 100 mg L(-1) (r2 > 0.99). The described method has been applied for the determination of mono-/disaccharides, uronic acids, and amino sugars in soil solutions and in landfill leachates.  相似文献   

11.
Static subcritical water extraction (SbWE) was coupled with collection on a strong anion exchange (SAX) disk for the determination of chlorinated acid herbicides and their esters in soil. With 100-150 degrees C water, esters were hydrolyzed into their acid form, and the herbicide acids extracted by subcritical water were trapped onto/into a SAX disk as the extraction cell was cooled. The trapped solutes were then derivatized for gas chromatographic (GC) analysis by placing the disk into a GC autosampler vial containing 1 mL of N,O-bis(trimethylsilyl)trifluoroacetamide derivatizing reagent. With the static SbWE/SAX disk extraction, nearly quantitative recoveries (typically over 80%) were obtained at 100 degrees C for 30 min in the extraction of herbicide acids and esters spiked on several different soils covering a range of organic content from 0.3 to 12%. Good agreements were reached between this method and EPA method 8151 for aged spiked soils. Detection limits of the static SbWE/SAX disk extraction were from 0.05 to 0.5 ppm and from 0.01 to 0.5 ppm using GC/electron capture detector and GC/mass spectrometry, respectively. The method is fast and simple and uses a small amount of organic solvent.  相似文献   

12.
An analytical method has been developed for the determination of trace levels of trifluoroacetic acid (TFA), an atmospheric breakdown product of several of the hydrofluorocarbon (HFC) and hydrochlorofluorocarbon (HCFC) replacements for the chlorofluorocarbon (CFC) refrigerants, in water and air. TFA is derivatized to the volatile methyl trifluoroacetate (MTFA) and determined by automated headspace gas chromatography (HSGC) with electron-capture detection or manual HSGC using GC/MS in the selected ion monitoring (SIM) mode. The method is based on the reaction of an aqueous sample containing TFA with dimethyl sulfate (DMS) in concentrated sulfuric acid in a sealed headspace vial under conditions favoring distribution of MTFA to the vapor phase. Water samples are prepared by evaporative concentration, during which TFA is retained as the anion, followed by extraction with diethyl ether of the acidified sample and then back-extraction of TFA (as the anion) in aqueous bicarbonate solution. The extraction step is required for samples with a relatively high background of other salts and organic materials. Air samples are collected in sodium bicarbonate-glycerin-coated glass denuder tubes and prepared by rinsing the denuder contents with water to form an aqueous sample for derivatization and analysis. Recoveries of TFA from spiked water, with and without evaporative concentration, and from spiked air were quantitative, with estimated detection limits of 10 ng/mL (unconcentrated) and 25 pg/mL (concentrated 250 mL:1 mL) for water and 1 ng/m(3) (72 h at 5 L/min) for air. Several environmental air, fogwater, rainwater, and surface water samples were successfully analyzed; many showed the presence of TFA.  相似文献   

13.
Noami M  Kataoka M  Seto Y 《Analytical chemistry》2002,74(18):4709-4715
In the analysis of tert-butyldimethylsilyl derivatives (IBDMS) of alkyl methylphosphonic acids (RMPA) and methylphosphonic acid (MPA), from soils by gas chromatography/mass spectrometry (GC/MS), the detection yields are generally low, due to the suppression of TBDMS derivatization by the soil matrix components and the adsorption of RMPA and MPA to the soils. An ion-exchange pretreatment of the aqueous soil extract can be used to overcome the former factor by removing interfering compounds. A pretreatment method is described for improving the detection yields due to the latter factor, using an alkaline extraction procedure. The recovery was estimated quantitatively using capillary electrophoresis. The soil samples tested included volcanogenous immature soils and showed a low aqueous extraction recovery and GC/MS detection yields. The inclusion of sodium hydroxide in the extraction solvent dramatically increased the recovery. Using a 0.1 M sodium hydroxide solution, the recovery was in excess of 68%. Interfering components were removed from the alkaline soil extract by solid-phase extraction of the acids on a silica-based strong anion exchanger. The alkaline soil extract was neutralized with hydrofluoric acid and applied to the cartridge in the fluoride form. After washing with water, MPA and RMPA could be eluted with methanolic ammonia nearly quantitatively. Using the established pretreatment method, MPA and RMPA were detected from all the soil samples in more than 67% yield.  相似文献   

14.
Sol-gel capillary microextraction (sol-gel CME) is introduced as a viable solventless extraction technique for the preconcentration of trace analytes. To our knowledge, this is the first report on the use of sol-gel-coated capillaries in analytical microextraction. Sol-gel-coated capillaries were employed for the extraction and preconcentration of a wide variety of polar and nonpolar analytes. Two different types of sol-gel coatings were used for extraction: sol-gel poly(dimethylsiloxane) (PDMS) and sol-gel poly(ethylene glycol) (PEG). An in-house-assembled gravity-fed sample dispensing unit was used to perform the extraction. The analysis of the extracted analytes was performed by gas chromatography (GC). The extracted analytes were transferred to the GC column via thermal desorption. For this, the capillary with the extracted analytes was connected to the inlet end of the GC column using a two-way press-fit fused-silica connector housed inside the GC injection port. Desorption of the analytes from the extraction capillary was performed by rapid temperature programming (at 100 degrees C/min) of the GC injection port. The desorbed analytes were transported down the system by the helium flow and further focused at the inlet end of the GC column maintained at 30 degrees C. Sol-gel PDMS capillaries were used for the extraction of nonpolar and moderately polar compounds (polycyclic aromatic hydrocarbons, aldehydes, ketones), while sol-gel PEG capillaries were used for the extraction of polar compounds (alcohols, phenols, amines). The technique is characterized by excellent reproducibility. For both polar and nonpolar analytes, the run-to-run and capillary-to-capillary RSD values for GC peak areas remained under 6% and 4%, respectively. The technique also demonstrated excellent extraction sensitivity. Parts per quadrillion level detection limits were achieved by coupling sol-gel CME with GC-FID. The use of thicker sol-gel coatings and longer capillary segments of larger diameter (or capillaries with sol-gel monolithic beds) should lead to further enhancement of the extraction sensitivity.  相似文献   

15.
Arsenic (V) is known to form heteropolyacid with ammonium molybdate in acidic aqueous solutions, which can be quantitatively extracted into certain organic solvents. In the present work, 12-molybdoarsenic acid extracted in butan-1-ol is used for quantification of As (V). Total arsenic is estimated by converting arsenic (III) to arsenic (V) by digesting samples with concentrated nitric acid before extraction. Concentration of As (III) in the sample solutions could be calculated by the difference in total arsenic and arsenic (V). The characterization of arsenic was carried out by GFAAS using Pd as modifier. Optimization of the experimental conditions and instrumental parameters was investigated in detail. Recoveries of (90-110%) were obtained in the spiked samples. The detection limit was 0.2 microg l(-1). The proposed method was successfully applied for the determination of trace amount of arsenic (III) and arsenic (V) in process water samples.  相似文献   

16.
The first analytical method for the determination of 13 phosphoric acid mono- and diesters from aqueous samples is presented. The method consists of solid-phase extraction (SPE) and ion-pair liquid chromatographic separation with tri-n-butylamine coupled to electrospray ionization tandem mass spectrometry in the negative ion mode. Due to a lack of pure standards, only 3 of the 13 esters could be quantified. SPE recoveries ranged from 71 to 112% for di-n-butyl phosphate, diphenyl phosphate, and di-(2-ethylhexyl) phosphate (DEHP) with limits of quantification from 7 to 14 ng/L for 100-mL samples. At analyte concentrations >or=1 microg/L, aqueous samples can be analyzed by direct injection without extraction. In municipal wastewater, six diesters and one monoester were unambiguously identified by comparison with synthesized reference material. DEHP showed highest concentrations of 60 and 5 microg/L in raw and treated wastewater, respectively. The detection of monoethylhexyl phosphate was confirmed by LC-Q-TOF-MS analysis, and it was found at a concentration level comparable to DEHP. Laboratory degradation tests show that phosphoric acid diesters can be formed as intermediates in the microbial degradation of trialkyl phosphates that are being used as flame retardants and plasticizers.  相似文献   

17.
A method for full speciation and determination of alkyllead and inorganic lead(II) in aqueous samples was developed. This was accomplished by in situ derivatization with deuterium-labeled sodium tetraethylborate NaB(C2D5)4 (DSTEB). The derivatization was carried out directly in the aqueous sample and the derivatives were extracted from the headspace by a solid-phase microextraction (SPME) fiber. The extracted analytes were then transferred to a GC/MS or a GC/FID for separation and detection. The research presented demonstrates that SPME and the derivatization reagent DSTEB can be used successfully for the speciation of Pb2+, Pb(CH3)3+, Pb(C2H5)3+, and Pb(C2H5)4 in water samples. All derivatives, Pb(C2D5)4, (CH3)3Pb(C2D5), (C2H5)3Pb(C2D5), and Pb(C2H5)4, are separated using an SBP-5 column. This method was applied to monitor degradation of tetraethyllead in water. This is the first report of ethylation by DSTEB for full speciation of methyllead, ethyllead, and inorganic lead compounds. This approach can be extended to other organometallic compounds as demonstrated for ethyltin speciation. This full speciation method will aid in monitoring occurrence, pathways, toxicity, and biological effects of these compounds in the environment. It is easily adopted for field analysis.  相似文献   

18.
Wu HF  Yen JH  Chin CC 《Analytical chemistry》2006,78(5):1707-1712
A novel analytical technique termed drop-to-drop solvent microextraction (DDSME) was developed to determine three methoxyacetophenone isomers in one drop of water, which were then detected by gas chromatography/mass spectrometry using electronic ionization mass spectrometry for quantification analysis and self-ion/molecule reaction/tandem mass spectrometry for isomer differentiation. The best optimum parameters for the DDSME technique were as follows: extraction time, 5 min; using toluene as the extraction solvent; volume of extraction solvent, 0.5 microL and no salt addition. The advantages of this method are rapidity, convenience, ease of operation, simplicity of the device, and extremely little solvent and sample consumption. The limit of detection (LOD) for this technique was 1 ng/mL. The relative standard deviation was less than 2.6% (n = 5). The linear range of the calibration curve of DDSME is from 0.01 to 5 microg/mL with correlation coefficient (r2) of >0.954. In the comparison of the LOD of DDSME with other sample pretreatment methods including liquid/liquid extraction (LLE), single-drop microextraction (SDME), solid-phase microextraction (SPME), and liquid-phase microextraction (LPME) using a dual gauge microsyringe with hollow fiber methods, this method shows much better in sensitivity than the LLE (25 ng/mL) and it is compatible with SDME (0.5 ng/mL), SPME (0.5 ng/mL), and LPME using a dual gauge microsyringe with a hollow fiber (1 ng/mL). However, DDSME was more convenient than the LPME using a dual gauge microsyringe with a hollow fiber method and much lower cost than the SPME technique.  相似文献   

19.
An in-sample derivatization headspace solid-phase microextraction method has been developed for the simultaneous determination of nonylphenol, nonylphenol mono- and diethoxylates (NP, NP1EO, NP2EO), and their acidic metabolites (NPlEC, NP2EC) in water. The analytical procedure involves derivatization of NPEOs and NPECs to their methyl ethers--esters with dimethyl sulfate/NaOH and further headspace (HS) solid-phase microextraction (SPME) and gas chromatography/mass spectrometry (GC/MS) determination. Parameters affecting both derivatization efficiency and headspace SPME procedure, such as the selection of the SPME coating, derivatizationextraction time, temperature and ionic strength were optimized. The commercially available Carbowax-divinylbenzene (CW-DVB) fiber appears to be the most suitable for the simultaneous determination of both NPEOs-NPECs. Run-to-run precision of the in-sample derivatization/HS-SPME-GC/MS method gave relative standard deviations between 8 and 18%. The method was linear for NP over 2 orders of magnitude, and detection limits were compound dependent but ranged from 20 to 1500 ng/L. The SPME procedure was compared with a solid-phase extraction SPE-GC/MS method for the analysis of NPEOs-NPECs in water samples and good agreement was obtained. Therefore, in-sample derivatization HS-SPME-GC/MS can be used as a method for the simultaneous determination of short ethoxy chain nonylphenols and their acidic metabolites in water.  相似文献   

20.
An in-depth study of SPME optimization and application has been made, considering not only aqueous (surface water and groundwater samples) but also the more complex soil samples. Seven herbicides widely used in the area of study have been selected including five triazine herbicides (atrazine, simazine, terbumeton, terbuthylazine, terbutryn), molinate, and bromacil. linearity range was between 0.1 and 10 ng/mL and the repeatability below 10% when applying the optimized SPME procedure to water samples. Reproducibility was found to be lower than 20% at the 1 ng/mL level, and the limits of determination in environmental water samples using GC/MS (SIM mode) were well below 0.1 ng/mL (values ranging from 10 to 60 ng/L). Extraction of selected herbicides from soil was carried out by microwave-assisted solvent extraction using methanol in screw-capped vials, leading to recoveries over 80% in spiked soil samples at the 5-200 ng/g level. SPME application over methanolic soil extracts required a 10-fold dilution with distilled water. The recommended procedure was found to be fully applicable for quantitative determination of selected herbicides in soils containing low organic matter content with coefficients of variation below or around 10% and limits of determination ranging from 1 to 10 ng/g. Both procedures were applied to real-world surface water and soil samples where several pesticides were detected including atrazine, simazine, terbuthylazine, and molinate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号