首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
The compressive strength and dynamic modulus of high volume fly ash concrete with incorporation of either metakaolin or silica fume were investigated. The water to cementitious materials ratio was kept at 0.4 for all mixtures. The use of high volume fly ash in concrete greatly reduces the strength and dynamic modulus during the first 28 days. The decreased properties during the short term of high volume fly ash concrete is effectively compensated by the incorporation of metakaolin or silica fume. The DTA results confirmed that metakaolin or silica fume increase the amount of the hydration products. An empirical relationship between dynamic modulus and compressive strength of concrete has been obtained. This relation provides a nondestructive evaluation for estimating the strength of concrete by use of the dynamic modulus.  相似文献   

2.
为了提高混凝土强度与改善混凝土的收缩性能,在混凝土中掺入聚丙烯纤维、硅灰及粉煤灰等掺合料,采用平行组对比试验,研究了掺合料对混凝土抗压强度和干燥收缩性能的影响规律,得到了相应的回归公式.结果表明,单掺粉煤灰的混凝土3,7,28 d抗压强度明显低于基准组,56 d抗压强度与基准组相差不大;复掺粉煤灰和硅灰混凝土的早期和后期抗压强度较单掺粉煤灰混凝土有不同程度的提高;聚丙烯纤维、粉煤灰和硅灰复掺可以显著抑制混凝土干燥收缩,且混凝土龄期与收缩率符合对数函数关系.  相似文献   

3.
The effect of fly ash and silica fume on hydration rate and strength of cement in the early stage was studied. Contrast test was applied to the complex cementitious system to investigate the hydration rate. Combined with mechanical strength, the influence of fly ash and silica fume during the hydration process of complex binder was researched. The peak of the rate of hydration heat evolution and the mechanical strength decreased as the ratio of fly ash increased, however, as the ratio of silica fume increased, the peak of the rate of hydration heat evolution and the mechanical strength increased obviously. When the ratios of fly ash and silica fume are 10% and 5%, the peak of the rate of hydration heat evolution is the highest. At the same time 7 days of flexural and compressive strength are the highest as 8.89 MPa and 46.52 MPa, respectively. Fly ash and silica fume are the main factors affecting the hydration rate and the mechanical property.  相似文献   

4.
大掺量混合材高性能混凝土的制备及强度特性   总被引:1,自引:0,他引:1  
在固定用水量为130 kg/m3下,研究了粉煤灰、磨细矿渣和硅灰对水泥替代量为30%、50%、70%,水胶比为0.33的高性能混凝土的制备。探讨了粉煤灰、硅灰和矿渣对新拌混凝土流动性和抗压强度的影响。在低水胶比情况下,粉煤灰、磨细矿渣和硅灰大掺量复掺,可制备得到工作性良好、早期强度满足要求和后期强度有极好发展的高性能混凝土;在高效减水剂的作用下,在大掺量混合材混凝土中以硅灰、磨细矿渣取代部分粉煤灰,可以有效提高大掺量混凝土的早期强度,进一步改善新拌混凝土的工作性。  相似文献   

5.
An investigation is reported on the influence of different components of high performance concrete (HPC) on the initial binding capacities (IBC) of chloride ion. The testing results demonstrate that cement has the largest IBC, and the relative binding ratio is as high as 30% of total ion amount. Among the mineral admixtures, fly ash has the largest IBC of chloride ion. The IBC of silica fume is about 14.4% ,which is smaller than that of fly ash. The IBC of refined ground blast-furnace slag (microslag) is abnormal due to the influence of sulfate ion contained. The addition of superplasticizer and corrosion inhibitor containing calcium nitrite weakens the IBC of mixtures. The fluidity and pore-filling effect of mineral admixtures are studied with paste samples with W/C ratio of 0.3. The influence mechanism of various components in high-performance concrete in IBC is studied further through SEM and Mercury Instrusion Porosimetry tests with paste samples at the age of 3 days.  相似文献   

6.
蒸养超细粉煤灰高性能混凝土性能试验研究   总被引:1,自引:3,他引:1  
研究蒸养条件下超细粉煤灰高性能混凝土的强度、弹性模量和应力-应变行为以及体积稳定性和耐久性能,结合微观测试手段,探讨超细粉煤灰在蒸养条件下的作用效应及其机制.试验结果表明,超细粉煤灰能显著提高混凝土的蒸养适应性,蒸养超细粉煤灰高性能混凝土的后期强度、弹性模量具有较好的增长率.与普通蒸养混凝土相比,蒸养超细粉煤灰高性能混凝土的脆性降低,塑性变形能力明显增强,干燥收缩明显降低,且抗氯离子渗透性能显著提高.超细粉煤灰可改善蒸养条件下混凝土的内部水化产物组成及其孔结构,降低混凝土的孔隙率,提高混凝土耐久性.  相似文献   

7.
通过正交试验提出纳米超高强高流态混凝土的胶凝材料配合比设计参数,并研究了纳米SiO2的掺入对传统掺硅灰、粉煤灰超高强水泥基胶凝材料强度及工作性能的影响。在保证水胶比不变的条件下,开展了混凝土配合比试验,并研究了纳米SiO2对混凝土抗压强度的影响及其微观机理。结果表明:超高强高流态混凝土中胶凝材料最优比例为:纳米SiO2:硅灰:粉煤灰:水泥=1:8:20:71;在胶凝材料用量为600~1 000 kg/m3范围内,随着其掺量的增加,混凝土流动度不断增加,抗压强度先增大后减小,当其掺量为800 kg/m3时,抗压强度最大。分析认为,纳米SiO2、硅灰与粉煤灰形成的三元多尺度堆积体系能优化粉体材料在混凝土中的微集料密实填充效应,纳米SiO2的二次水化反应也有效改善了硬化水泥石的微观结构,并优化其形态分布,进一步增大其强度。  相似文献   

8.
针对高水材料强度相对偏低、成本相对较高的问题,选取粉煤灰和硅粉两种添加剂,对高水材料进行改性研究,添加剂掺量梯度为5%、10%、15%和20%,采用了四川大学电子万能试验机和扫描电镜(SEM)两种试验设备,进行了添加剂对高水材料力学性质影响试验,探究了添加剂对高水材料微观结构及力学性能的影响。试验结果表明,掺20%粉煤灰和掺10%硅粉均可使高水材料的抗压强度提高到0.36MPa,与未掺添加剂高水材料相比,强度提高了20%,且能有效提高残余强度;添加剂的掺入改变了高水材料钙钒石晶体的发育形貌、直径大小以及空间网状结构的致密程度;证明了抗压强度的大小是由晶体形貌、直径大小、晶体结构的搭接方式以及网状结构的致密性共同影响的。  相似文献   

9.
The dynamic mechanical property of concrete is one of the key parameters, which greatly influences durability of infrastructures subjected to continuous heavy loading, such as girder and track slab of high-speed railway foundation structure. This paper reports serials of experiments designed to investigate the deterioration of dynamic mechanical properties of different concretes under fatigue loading condition. Four parameters including relative dynamic elastic modulus (RDEM), relative dynamic shear modulus (RDSM), relative compressive strength (RCS) and water absorption (WA) of concrete were evaluated to assess the dynamic properties and microstructures of concretes. Results show that the fatigue stress levels and fatigue cycle durations significantly influence the dynamic mechanical properties of concrete including dynamic elastic modulus and dynamic shear modulus. Addition of proper mineral admixture can improve the dynamic mechanical characteristics of concrete and increase its resistance against the fatigue loading effect. Keeping the amount of mineral admixture in concrete constant, its dynamic mechanical property with fly ash is lower than that with fly ash and silica fume. The water absorption in concrete, which is an indirect parameter reflecting capillary porosity, increases evidently after bearing fatigue-loading. There is a close correlation between the deterioration of dynamic mechanical property and the increasing of water absorption of concrete. This indicates that the damage of microstructure of concrete subjected to fatigue loading is the indispensable reason for the decay of its dynamic mechanical performance.  相似文献   

10.
为了解决现场喷射混凝土普遍存在强度低、喷层易开裂、回弹量大、粉尘浓度高等问题,在喷射混凝土中加入不同掺量的硅灰、粉煤灰替代水泥,并通过室内试验和现场试验研究硅灰、粉煤灰对添加铝酸盐液态速凝剂喷射混凝土性能的影响。结果表明:铝酸盐液态速凝剂掺量为3%时,凝结效果最好;单掺8%的硅灰能有效促进铝酸盐液态速凝剂的凝结效果,提高混凝土强度,增加粘聚性;单掺粉煤灰可以降低速凝剂的促凝效果、降低混凝土强度、提高和易性。硅灰、粉煤灰和铝酸盐液态速凝剂混掺,对混凝土1 d抗压强度影响由主到次为粉煤灰掺量>速凝剂掺量>硅灰掺量,28 d抗压强度影响由主到次为速凝剂掺量>硅灰掺量>粉煤灰掺量,从而得出三者最佳组合。并结合新型喷射工艺进行现场试验,得出最佳组合能有效减少水泥用量、提高喷射混凝土强度、减少开裂、降低回弹和粉尘的结论。  相似文献   

11.
Effects of factors such as water to cement ratio, fly ash and silica fume on the resistance of concrete to sulfate attack were investigated by dry-wet cycles and immersion method. The index of the resistance to sulfate attack was used to evaluate the deterioration degree of concrete damaged by sulfate. The relationship between the resistance of concrete to sulfate attack and its permeability/porosity were analyzed as well as its responding mechanism. Results show that the depth of sulfate crystal attack from surface to inner of concrete can be reduced by decreasing w/c and addition of combining fly ash with silica fume. The variation of relative elastic modulus ratio and relative flexural strength ratio of various specimens before and after being subjected to sulfate attack was compared.  相似文献   

12.
为改善市政污泥对混凝土抗冻融性能的劣化效果,在氢氧化钠及水玻璃的复合激发下,用经生石灰改性后的市政污泥取代10%细骨料,粉煤灰分别取代10%、20%与30%水泥,制备了混凝土。分析了不同冻融循环次数下,混凝土的表观现象、相对质量、相对动弹性模量、相对抗压强度及微观结构随粉煤灰掺量与碱当量的变化规律,分别以相对动弹性模量与相对抗压强度为损伤变量建立了不同的冻融损伤模型。研究结果表明:随冻融循环次数增加,混凝土表观损伤愈发严重,内部孔隙增多,相对动弹性模量及相对抗压强度显著降低;与对照组相比,粉煤灰及碱激发剂的加入可以改善市政污泥对混凝土冻融耐久性的劣化效果,降低混凝土在冻融循环作用下的质量损失、动弹性模量损失及抗压强度损失;当粉煤灰掺量10%、碱当量4%时,粉煤灰可在碱激发剂及改性污泥中残余碱的联合作用下被较充分地激发,可消纳改性污泥中的残余碱,减弱市政污泥对混凝土抗冻融性能的劣化效果,此时混凝土水化程度最高,在冻融循环作用下的质量损失、动弹性模量损失及抗压强度损失最小,且服役寿命最长,约为16a以上;相对动弹性模量与相对抗压强度相关性良好,分别以两者为损伤变量的冻融损伤模型与试验结果均吻合良好。  相似文献   

13.
The effects of fly ash on the compressive strength, pore size distribution and chloride-ion penetration of recycled aggregate concrete were investigated. Two series of concrete mb:tures were prepared. The concrete mixtures in series I had a water-to-binder ratio and a cement content of 0.55 and 410 kg/ m^3 , respectively. The concrete rnixtures in series II had a water-to-binder ratio and a cement content of 0.45 and 400 kg/ ml respectively. Recycled aggregate was ased as 20% , 50% , and 100% replacements of natural coarse aggregate in the concrete mixtures in both series. In cutdition, fly ash was used as 0% , 25% and 35% by weight replacements of cement. The results show that the compressive strengths of the concrete decreased as the recycled aggregate and the fly ash contents increased. The total porosity and average porosity diameter of the concrete increased us the recycled aggregate content increased. Furtherrruore , an increase in the recycled aggregate content decreased the resistance to chloride ion penetration. Nevertheless, the replacement of cement by 25% fly ush improved the resistance to chloride ion penetration and pore diameters and reduced the total porosity of the recycled aggregate concrete.  相似文献   

14.
碱激发复合渣体混凝土的试验研究   总被引:2,自引:1,他引:1  
为利用碱(水玻璃、氢氧化钠、碳酸钠)激发粉煤灰和其他工业废渣(矿渣、锂渣及硅灰),改变这些渣体在混凝土中传统利用方式,以便更充分发挥这些工业渣体的活性,研究激发剂的种类、矿渣和粉煤灰的比例及粉煤灰和其他工业废渣复合时对混凝土强度的影响.结果表明,利用水玻璃和氢氧化钠复合激发可配制出强度更高的混凝土,当粉煤灰和矿渣的比例为80∶20时,混凝土28 d抗压强度仍可达66 MPa,粉煤灰∶矿渣∶锂渣∶硅灰=50∶30∶15∶5时,在不采用任何特殊措施的条件下,可配制出28 d抗压强度达85 MPa的环境降负性高强混凝土.同时,对这种混凝土的抗碳化性能进行研究,碳化试验表明,强度等级在C60~C80之间的混凝土,无论从保护钢筋的角度还是碳化后强度的变化情况考虑,其抗碳化性完全可以满足一般建筑的要求.  相似文献   

15.
研究了硅灰、矿渣微粉和粉煤灰三种常用矿物掺合料对混凝土抗硫酸盐腐蚀能力的影响。试验结果表明:三种矿物掺合料均可改善混凝土的抗硫酸盐腐蚀能力,作用效率由高至低依次为:硅灰>矿渣>粉煤灰;掺合料混凝土中砂浆膨胀值发展与混凝土硫酸盐腐蚀程度有良好相关性,采用混凝土中砂浆的膨胀值和抗压强度比两项指标能较准确的评价混凝土抗硫酸盐腐蚀的能力。  相似文献   

16.
The enhancement effects of GH admixture on the early strengths of fly ash concrete and mortar were studied, and the mechanism was analyzed by X-ray diffraction (XRD) and scanning electro microscope (SEM). Experimental results show that, by the incorporation of GH admixture, both of cement hydration and pozzolanic reaction of fly ash are accelerated, the strengths of fly ash concrete and mortar are enhanced noticeably, especially the early strength. With a mixture design of 200 kg/m^3 OPC (Ordinary Portland Cement ), 200 kg/m^3 fly ash and 50 kg/m^3 GH admixture, the strength of concrete at 1 d, 3 d and 28 d reaches 25 MPa, 50 MPa and 70 MPa respectively.  相似文献   

17.
The Compressive strength, porosity and pore size distribution of high performance metakaolin (MK) concrete were investigated. Concretes containing 0,5%,10% and 20% metakaolin were prepared at a water/cementitious material ratio (W/C) of 0.30.In parallel, concrete mixtures with the replacement of cement by 20% fly ash or 5 and 10% silica fume were prepared for comparison.The specimens were cured in water at 27℃ for 3 to 90 days .The results show that at the early age of curing(3 days and 7 days),metakaolin re-placements increase the compressine strength ,but silica fume replacement slightly reduces the compressine strength.At the age of and after 28 days ,the compressive strength of the concrete with metakaolin and silica fume replace-ment increases.A strong reduction in the total porosity and average pore diameter were observed in the conctete with MK 20% and 10% in the first 7 days.  相似文献   

18.
高性能混凝土的力学性能研究   总被引:4,自引:0,他引:4       下载免费PDF全文
为了弄清高性能混凝土的有关力学性能,本文对龄期为56天、抗压强度60至100MPa(加硅粉或不加硅粉)的高性能混凝土进行了试验研究。分析并讨论了抗压强度随时间变化和受干燥影响的试验结果。通过20个试件的试验测得了静力弹性模量和泊松比的试验值,并用回归方法导出了弹性模量的线性方程式。  相似文献   

19.
微珠与硅灰、粉煤灰水化活性的对比研究   总被引:1,自引:0,他引:1  
为研究微珠对二元复合胶凝材料体系水化硬化的影响机理,以及与粉煤灰、硅灰的差别,作者运用激光粒度分析(Laser Particle Sizer)、X射线衍射分析(XRD)、扫描电子显微镜(SEM)、热重分析(TGA)、微量热仪(Tam Air)、傅里叶红外光谱分析(FTIR)等多种现代微观测试技术,对微珠的水化活性进行了系统的研究。结果表明,微珠的水化活性介于硅灰和粉煤灰二者之间。  相似文献   

20.
Performances of Concrete under Elevated Curing Temperature   总被引:1,自引:1,他引:1  
The behaviors of concrete at elevated curing temperature were studied. The test results show that when concrete is cured at elevated temperature , a harmful consequence occurs. The later strength decreases significantly compared to that under normal curing condition. Incorporating silica fume, fly ash and slag or lowering wl c ratio can effectively alleviate this harmful consequence. Comparatively, incorporation of silica fume is the most efficient means to decrease the later strength reduction. The harmful consequence is not caused by the difference in degree of hydration since the degree of hydration is similar between elevated curing temperature and normal curing conthion . The SEM analysis shows that it is the uneven distribution of hydration products caused by elevated curing temperature that leads to the later strength reduction of concrete.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号