首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper focuses on sensor scheduling and information quantization issues for target tracking in wireless sensor networks (WSNs). To reduce the energy consumption of WSNs, it is essential and effective to select the next tasking sensor and quantize the WSNs data. In existing works, sensor scheduling’ goals include maximizing tracking accuracy and minimizing energy cost. In this paper, the integration of sensor scheduling and quantization technology is used to balance the tradeoff between tracking accuracy and energy consumption. The main characteristic of the proposed schemes includes a novel filtering process of scheduling scheme, and a compressed quantized algorithm for extended Kalman filter (EKF). To make the algorithms more efficient, the proposed platform employs a method of decreasing the threshold of sampling intervals to reduce the execution time of all operations. A real tracking system platform for testing the novel sensor scheduling and the quantization scheme is developed. Energy consumption and tracking accuracy of the platform under different schemes are compared finally.  相似文献   

2.
An energy-balanced multiple-sensor collaborative scheduling is proposed for maneuvering target tracking in wireless sensor networks (WSNs). According to the position of the maneuvering target, some sensor nodes in WSNs are awakened to form a sensor cluster for target tracking collaboratively. In the cluster, the cluster head node is selected to implement tracking task with changed sampling interval. The distributed interactive multiple model (IMM) filter is employed to estimate the target state. The estimat...  相似文献   

3.
Due to the severe resource constraints in wireless sensor networks (WSNs), designing an efficient target tracking algorithm for WSNs in terms of energy efficiency and high tracking quality becomes a challenging issue. WSNs usually provide centralized information, e.g., the locations and directions of a target, choosing sensors around the target, etc. However, some ready strategies may not be used directly because of high communication costs to get the responses for tracking tasks from a central server and low quality of tracking. In this paper, we propose a fully distributed algorithm, an auction-based adaptive sensor activation algorithm (AASA), for target tracking in WSNs. Clusters are formed ahead of the target movements in an interesting way where the process of cluster formation is due to a predicted region (PR) and cluster members are chosen from the PR via an auction mechanism. On the basis of PR calculation, only the nodes in the PR are activated and the rest of the nodes remain in the sleeping state. To make a trade-off between energy efficiency and tracking quality, the radius of PR and the number of nodes are adaptively adjusted according to current tracking quality. Instead of fixed interval (usually used in existing work), tracking interval is also dynamically adapted. Extensive simulation results, compared to existing work, show that AASA achieves high performance in terms of quality of tracking, energy efficiency, and network lifetime.  相似文献   

4.
Wireless sensor networks (WSNs) are usually deployed for monitoring systems with the distributed detection and estimation of sensors. Sensor selection in WSNs is considered for target tracking. A distributed estimation scenario is considered based on the extended information filter. A cost function using the geometrical dilution of precision measure is derived for active sensor selection. A consensus-based estimation method is proposed in this paper for heterogeneous WSNs with two types of sensors. The convergence properties of the proposed estimators are analyzed under time-varying inputs. Accordingly, a new adaptive sensor selection (ASS) algorithm is presented in which the number of active sensors is adaptively determined based on the absolute local innovations vector. Simulation results show that the tracking accuracy of the ASS is comparable to that of the other algorithms.  相似文献   

5.
移动目标跟踪是无线传感器网络中的一项重要应用,将睡眠调度机制引入到目标跟踪算法中可以大大降低能耗。针对目标跟踪的实际需求,提出一种面向目标跟踪的传感器网络睡眠调度协议。根据目标跟踪不同阶段,分别设计了目标跟踪前和跟踪过程中传感器节点的睡眠调度机制;另外给出了目标丢失时,如何唤醒节点继续跟踪目标的调度策略。结果表明:该算法能够在保证跟踪质量的同时,降低跟踪能耗。  相似文献   

6.
Wireless sensor networks (WSNs) comprise a number of autonomous sensors and one or more sinks to cooperatively monitor physical or environmental conditions. Energy efficiency is a key design factor of a MAC protocol for WSNs. Due to the importance of the problem, a number of energy efficient MAC protocols have been developed for WSNs. Preamble-sampling based MAC protocols (e.g., B-MAC and X-MAC) have overheads due to their preambles, and are inefficient at large wakeup intervals. SCP-MAC, a synchronous scheduled energy-efficient scheduling MAC protocol, minimizes the preamble by combining preamble sampling and scheduling techniques; however, it does not prevent energy loss due to overhearing; in addition, due to its synchronization procedure, it results in increased contention and delay. In this paper, we present an energy efficient MAC protocol for WSNs that avoids overhearing and reduces contention and delay by asynchronously scheduling the wakeup time of neighboring nodes. We provide an energy consumption analysis for multi-hop networks. To validate our design and analysis, we implement the proposed scheme in TinyOS. Experimental results show that AS-MAC considerably reduces energy consumption, packet loss and delay when compared with existing energy efficient MAC protocols.  相似文献   

7.
Target tracking is a typical and important application of wireless sensor networks(WSNs).Existing target tracking protocols focus mainly on energy efficiency,and little effort has been put into network management and real-time data routing,which are also very important issues for target tracking.In this paper,we propose a scalable cluster-based target tracking framework,namely the hierarchical prediction strategy(HPS),for energyefficient and real-time target tracking in large-scale WSNs.HPS organizes sensor nodes into clusters by using suitable clustering protocols which are beneficial for network management and data routing.As a target moves in the network,cluster heads predict the target trajectory using Kalman filter and selectively activate the next round of sensors in advance to keep on tracking the target.The estimated locations of the target are routed to the base station via the backbone composed of the cluster heads.A soft handoff algorithm is proposed in HPS to guarantee smooth tracking of the target when the target moves from one cluster to another.Under the framework of HPS,we design and implement an energy-efficient target tracking system,HierTrack,which consists of 36 sensor motes,a sink node,and a base station.Both simulation and experimental results show the efficiency of our system.  相似文献   

8.
对WSNs中机动目标跟踪问题提出一种自适应多传感器协同跟踪策略.该策略能根据目标的移动位置,动态地唤醒无线传感器网络中部分传感器节点形成分簇,并选择合适的簇首和采样间隔进行目标跟踪.簇内节点通过协作感知以及测量信息融合,提高了跟踪精度,同时自适应可变采样间隔节约了通信能量和计算资源,满足了跟踪系统的实时性要求.提出了传感器网络能量均衡分配的指标,提高了网络的可靠性.由于模型的非线性和目标运动的机动性,采用IMM滤波器进行目标状态估计.仿真结果表明,与NSSS和DGSS相比,跟踪精度明显提高;与DCSS相比,在保证一定跟踪精度的同时,节约了能量消耗.  相似文献   

9.
WSNs下一种自适应多传感器协同目标跟踪策略*   总被引:1,自引:1,他引:0  
对WSNs中机动目标跟踪问题提出一种自适应多传感器协同跟踪策略。该策略能根据目标的移动位置,动态地唤醒无线传感器网络中部分传感器节点形成分簇,并选择合适的簇首和采样间隔进行目标跟踪。簇内节点通过协作感知以及测量信息融合,提高了跟踪精度,同时自适应可变采样间隔节约了通信能量和计算资源,满足了跟踪系统的实时性要求。提出了传感器网络能量均衡分配的指标,提高了网络的可靠性。由于模型的非线性和目标运动的机动性,采用IMM滤波器进行目标状态估计。仿真结果表明,与NSSS和DGSS相比,跟踪精度明显提高;与DCSS相比  相似文献   

10.
Underwater mobile sensor networks (UMSNs) with free-floating sensors are more suitable for understanding the immense underwater environment. Target tracking, whose performance depends on sensor localization accuracy, is one of the broad applications of UMSNs. However, in UMSNs, sensors move with environmental forces, so their positions change continuously, which poses a challenge on the accuracy of sensor localization and target tracking. We propose a high-accuracy localization with mobility prediction (HLMP) algorithm to acquire relatively accurate sensor location estimates. The HLMP algorithm exploits sensor mobility characteristics and the multi-step Levinson-Durbin algorithm to predict future positions. Furthermore, we present a simultaneous localization and target tracking (SLAT) algorithm to update sensor locations based on measurements during the process of target tracking. Simulation results demonstrate that the HLMP algorithm can improve localization accuracy significantly with low energy consumption and that the SLAT algorithm can further decrease the sensor localization error. In addition, results prove that a better localization accuracy will synchronously improve the target tracking performance.  相似文献   

11.
基于传感器多模式调度的智能目标跟踪算法   总被引:1,自引:0,他引:1  
智能目标具有反跟踪的特性,其运动状态的改变与跟踪传感器的工作模式相关.为了实现对智能目标的有效跟踪,文中提出一种基于传感器多模式调度的交互多模型跟踪算法.首先,为智能目标构建混合多模型集,描述其与传感器模式相关的智能运动特性;其次,提出一种传感器多模式调度策略,综合考虑了一步预测的目标跟踪误差、二步预测的目标运动趋势误差以及传感器模式的辐射代价3方面因素,据此构建传感器多模式调度的目标函数;最后,将传感器多模式调度与交互多模型跟踪算法相结合,通过"模式调度→交互跟踪→模式调度"的闭环结构,提高了对智能目标跟踪的自适应性.仿真结果表明,与选择固定传感器模式的方法和基于近视策略的传感器模式调度方法相比,文中方法实现了对智能目标的持续精确跟踪.  相似文献   

12.
High information quality is a paramount requirement for wireless sensor network (WSN) monitoring applications. However, it is challenging to achieve a cost effective information quality solution due to unpredictable environment noise and events, unreliable wireless channel and network bandwidth, and sensor resource and energy constraints. Specifically, the dynamic and unreliable nature of WSNs make it difficult to pre-determine optimum sensor rates and predict packet loss. To address this problem, we present an information quality metric which characterizes information quality based on the sampling frequency of sensor nodes and the packet loss rate during network transmission. Our fundamental quality metric is based on signal-to-noise ratio and is therefore application independent. Based on our metric, a quality-aware scheduling system (QSS) is developed, which exploits cross-layer control of sensor nodes to effectively schedule data sensing and forwarding. Particularly, we develop and evaluate several QSS scheduling mechanisms: passive, reactive and perceptive. These mechanisms can adapt to environment noise, bandwidth variation and wireless channel collisions by dynamically controlling sensor rates and phase. Our experimental results indicate that our QSS is a novel and effective approach to improve information quality for WSNs.  相似文献   

13.
针对无线传感器网络(WSNs)中目标跟踪性能与传感器能量消耗难以平衡问题,提出一种信念重用的WSNs能量高效跟踪算法。使用部分可观察马尔可夫决策过程(POMDPs)对动态不确定环境下的WSNs进行建模,将跟踪性能与能量消耗平衡优化问题转化为POMDPs最优值函数求解过程;采用最大报酬值启发式查找方法获得跟踪性能的逼近最优值;采用信念重用方法避免重复获取信念,有效降低传感器通信带来的能量消耗。实验结果表明:信念重用算法能够有效优化跟踪性能与能量消耗之间的平衡,达到以较低的能量消耗获得较高跟踪性能的目的。  相似文献   

14.
一种基于无线传感器网络的分布式处理目标跟踪系统   总被引:1,自引:0,他引:1  
系统使用超声波传感器和扩展卡尔曼滤波对无线传感器网络中的移动单目标进行定位跟踪.节点嵌入式应用程序采用TinyOS/nesC[1]编程实现,采用Labview进行应用层开发.为了优化网络的能耗以延长网络寿命,提出了两种在分布式传感器网络中局部节点自适应选择任务节点[2]的方法.实验结果验证了扩展卡尔曼算法的正确性,并比较了这两种任务节点选择调度方法的跟踪性能,得出了基于候选节点协方差矩阵最小迹的任务节点选择调度方式在目标丢失率和跟踪精度综合考虑的基础上性能更优.  相似文献   

15.
This paper proposes a novel sensor scheduling scheme based on adaptive dynamic programming, which makes the sensor energy consumption and tracking error optimal over the system operational horizon for wireless sensor networks with solar energy harvesting. Neural network is used to model the solar energy harvesting. Kalman filter estimation technology is employed to predict the target location. A performance index function is established based on the energy consumption and tracking error. Critic network is developed to approximate the performance index function. The presented method is proven to be convergent. Numerical example shows the effectiveness of the proposed approach.  相似文献   

16.
Target tracking applications of wireless sensor networks (WSNs) may provide a high performance only when a reliable collection of target positions from sensor nodes is ensured. The performance of target tracking in WSNs is affected by transmission delay, failure probability, and nodes energy depletion. These negative factors can be effectively mitigated by decreasing the amount of transmitted data. Thus, the minimization of data transfers from sensor nodes is an important research issue for the development of WSN-based target tracking applications. In this paper, a data suppression approach is proposed for target chasing in WSNs. The aim of the considered target chasing task is to catch a moving target by a mobile sink in the shortest time. According to the introduced approach, a sensor node sends actual target position to the mobile sink only if this information is expected to be useful for minimizing the time in which target will be caught by the sink. The presented method allows sensor nodes to evaluate the usefulness of sensor readings and select those readings that have to be reported to the sink. Experiments were performed in a simulation environment to compare effectiveness of the proposed approach against state-of-the-art methods. Results of the experiments show that the presented suppression method enables a substantial reduction in the amount of transmitted data with no significant negative effect on target chasing time.  相似文献   

17.
The paper proposes a cooperative distributed target tracking algorithm in mobile wireless sensor networks.There are two main components in the algorithm:distributed sensor-target assignment and sensor motion control.In the key idea of the sensor-target assignment,sensors are considered as autonomous agents and the defined objective function of each sensor concentrates on two fundamental factors:the tracking accuracy and the tracking cost.Compared with the centralized algorithm and the noncooperative distrib...  相似文献   

18.
研究无线传感器网络在位置信息不确定时,同时定位无线传感器网络节点并跟踪移动目标。利用RSSI测量节点对之间的距离,多维定标技术根据距离矩阵完成传感器网络的初始定位。估计与更新阶段提出了压缩EKF滤波确定传感器节点位置和目标位置。仿真结果显示:算法在较低的网络覆盖率下有较高的定位和跟踪准确度,在初始定位误差为5m时,节点和跟踪误差均小于3m,特别是在长距离的跟踪任务中有很好的精度和实时性。  相似文献   

19.
针对集中目标跟踪和分层目标跟踪中心节点通信瓶颈以及容错性能差的不足, 提出了一种分布式动态一致性非线性目标跟踪策略。目标状态初始化由网络节点采用加权最小二乘法完成。整个跟踪过程采用动态成簇策略, 分阶段选择并唤醒任务节点检测目标并执行分布式一致性扩展卡尔曼滤波策略完成目标的状态估计, 其余节点进入休眠状态从而能降低系统的能耗。从跟踪误差和能量两个方面, 与集中目标跟踪算法相比, 仿真结果表明所提算法与集中卡尔曼滤波相比, 跟踪精度相当, 适用于要求高可靠度的非线性跟踪。此外分布式的工作方式使得节点仅需与邻居交换数据并在局部完成状态估计, 消除集中式结构中心节点的瓶颈, 以保证部分传感器节点的损坏不会影响到全局任务的完成。  相似文献   

20.
为了提高无线传感器网络( WSNs)使用寿命,对WSNs的目标跟踪方式进行研究,提出基于无迹Kalman滤波( UKF)的WSNs Sink节点动态跟踪算法,以实现高效节能的资源管理和利用方式。首先利用UKF算法对目标节点的下一位置进行预测,然后通过四圆区域定位交叉定位算法对Sink节点的位置区域进行局部准确定位。实验结果表明:这种动态的Sink节点预测定位算法能够有效缩短数据发射传感器和Sink点之间的距离,减少跳数,从而实现负载均衡降低能耗的效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号