首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The phase structure of nanostructured Y2O3 (n-Y2O3) at low temperature was studied by x-ray diffraction profile refinement (XRDPR) method. All maximum X-ray diffraction peaks of Y2O3 were observed. The results show that the sample compacted at room temperature consists of two monoclinic phases B1 and B2 and a cubic phase. The samples sintered at 300°C and at 600°C for 5 hours, respectively, are also composed of monoclinic B1, B2 and cubic phases.The results show that with increasing temperature, grain growth, migration of grain boundary and phase transformation occur. This paper presents some quantitative information.  相似文献   

2.
La2O3 doped nanocrystalline zirconia (ZrO2) has been prepared by chemical co-precipitation method for various dopant concentrations, varying from 3 to 30 mol%. Structural phases have been characterized by X-ray diffraction technique. All the as-synthesized samples were found to be in monoclinic phase. Annealing of the samples at different temperatures from 400 to 1000∘C stabilized ZrO2 either partially or fully the tetragonal/cubic phases. When they were annealed at 1200∘C, the monoclinic phase appeared again with a new cubic pyrochlore structured La2Zr2O7 at the expense of stabilized tetragonal phase. Formability of the tetragonal/cubic phase has been influenced by the dopant concentration and the annealing temperature. Sample with 8 mol% La2O3 has been stabilized completely in tetragonal/cubic phase after annealing at 900∘C for 1 h. Smallness of the grain in these nanocrystalline materials may also have assisted in the formation of La2O3-ZrO2 solid solution.  相似文献   

3.
The fifty seven nm thick La2O3 thin films were deposited on Si (100) substrates. After deposition, the amorphones thin films, were amorphous, were annealed at 750 and 900 °C for 1 h. It was found that their amorphous structure had been crystallized to hexagonal and cubic structures, respectively. The phase formation of the La2O3 thin films was anomalous at higher annealing temperatures. The theory of heterogeneous nucleation was used to interpret the anomalous phase formation of La2O3 films. To investigate the effects of the phase structure on these properties, Refractive indexes and dielectric constants of different structures of La2O3 films were measured.  相似文献   

4.
Phase relationships in the system Si3N4-SiO2-La2O3   总被引:1,自引:0,他引:1  
Phase relationships in the system Si3N4-SiO2-La2O3 have been investigated after cooling from 1700° C. Two phases, 2Si3N4·La2O3 (monoclinic) and La5 (SiO4)3N (hexagonal), were identified; the other two phases in the system, LaSiO2N (monoclinic) and La4Si2O7N2 (monoclinic), were found to dissociate to La5 (SiO4)3N and a glass after cooling from temperatures above 1650° C. The unit cells of 2Si3N4·La2O3, LaSiO2N and La4Si2O7N2 have been determined and compared with those of preceding works. The results are discussed in relation to the intergranular phases observed when Si3N4 is sintered with La2O3 additions.  相似文献   

5.
The system Fe2O3-In2O3 was studied using X-ray diffraction,57Fe Mössbauer spectroscopy and infrared spectroscopy. The samples were prepared by chemical coprecipitation and thermal treatment of the hydroxide coprecipitates. For samples heated at 600 °C, a phase, α- (Fe1?x In x )2O3, isostructural with α-Fe2O3, exists for 0?x?0.8, and a phase C-(Fe1?x In x )2O3, isostructural with cubic In2O3, exists for 0.3?x?/1. In the two-phase region these two phases are poorly crystallized. An amorphous phase is also observed for 0.3?x?0.7. For samples heated at 900 °C the two-phase region is wider and exists for 0.1?x?0.8 with the two phases well crystallized. In these samples an amorphous phase is not observed.57Fe Mössbauer spectroscopy of samples prepared at 600 °C indicated a general tendency of the broadening of spectral lines and the decrease of numerical values of the hyperfine magnetic field (HMF) with increasing molar fraction In2O3 in the system Fe2O3-In2O3. The samples prepared at 900 °C, in the two-phase region, are characterized by a constant HMF value of 510 kOe at room temperature. Infrared spectroscopy was also used to follow the changes in the infrared spectra of the system Fe2O3-In2O3 with gradual increase of molar fraction of In2O3. A correlation between X-ray diffraction, Mössbauer spectroscopic and infrared spectroscopic results was obtained.  相似文献   

6.
The nature of the second phase particles associated with LC Astroloy prepared using powder metallurgy techniques has been examined. The individual particles have been identified using energy dispersive X-ray analysis and convergent beam electron diffraction. Four distinct types of particles have been observed: a cubic MC carbide in which M is either titanium or titanium plus molybdenum, a monoclinic phase ZrO2, a trigonalα-Al2O3 and a tetragonal M3B2 phase in which M is molybdenum or molybdenum and chromium. The observations indicate that, although some MC carbides are associated with the ZrO2 phase, the majority of the prior particle boundary precipitates are separate entities. Hot isostatic pressing or subsequent heat treatments above or below the γ′ solvus were observed to have little effect on the incidence or distribution of the precipitation associated with the prior particle boundaries. In contrast, heat treatments above the γ′ solvus resulted in the dissolution of the M2B3 phase and its preferential precipitation on the grain boundaries.  相似文献   

7.
The (metastable) tetragonal phase in 3–4 mol% Y2O3-ZrO2 alloys undergoes a transition to the monoclinic form in the 200–300 °C temperature range. Microcracking due to the volume change at this transition has been detected in these compositions by sharp acoustic emission during heating. The phase change was confirmed by X-ray diffraction, dilatometry and scanning electron microscopy. The monoclinic tetragonal transition in ZrO2-1 mol% Y2O3 alloy at 850–750 °C and the same phase change in 2, 3, 4 and 6 mol% Y2O3 compositions at the eutectoid temperature of about 560 °C was also clearly signalled by the acoustic emission counts during heating and cooling. There was no significant acoustic emission activity on heating and cooling the 9 and 12 mol% Y2O3 compositions, which are cubic. The acoustic emission data thus confirm the phase relations in the 1–12 mol% Y2O3 region, established by conventional methods such as differential thermal analysis, dilatometry and X-ray diffraction.  相似文献   

8.
The systems ZrO2-Ln2O3 have been studied on samples annealed at 600,1170,1450°C in the 0–15 mol % Ln2O3 (where Ln is the rare-earth La, Nd, Sm or Er) range using X-ray diffraction, thermal analysis and dilatometry. The microstructure of annealed samples was examined mainly by electron microscopy. It was found that rare-earth oxides-doped zirconia formed monoclinic, tetragonal, cubic and pyrochlore-type phases. The existing region of the tetragonal phase is 1–15 mol % Ln2O3, which is independent of the species but dependent on the dopant content and temperature. The equilibrium phase diagrams and non-equilibrium diagrams have been deduced. The temperature and composition of eutectoid ZrO2,ss (T)→ZrO2,ss (M) + Py, as well as interconnection between grain size, Ln2O3 content and the martensitic transformation temperature, (M s), were determined.  相似文献   

9.
ZrO2-Y2O3 ceramics with varying Bi2O3 contents were prepared and their microstructures and electrical conductivities investigated. The phase stability of cubic fluorite zirconia was disturbed by the introduction of Bi2O3 and tetragonal or monoclinic second phases appeared. The effect of the second phases on the intragrain and the grain boundary conductivities was investigated in the 300–550 C range using complex plane analysis in the frequency range of 5 Hz to 13 MHz. It showed that conductivity data could readily be interpreted in terms of possible physical models and electrical equivalent circuits. Tetragonal phases had a small positive influence on the intragrain conductivity. The grain 9boundary resistivity could be diminished by discrete monoclinic second phases which offered more conductive intergranular contacts.  相似文献   

10.
Stability relationships of the four polymorphs of bismuth oxide have been determined by means of DTA and high-temperature x-ray studies. The stable low-temperature monoclinic form transforms to the stable cubic form at 730 ±5 °C, which then melts at 825 ± 5 °C. By controlled cooling, the metastable tetragonal phase and/or the metastable body-centered cubic (b.c.c.) phase appear at about 645 °C. Whereas b.c.c. can be preserved to room temperature, tetragonal will transform to monoclinic between 550 and 500 °C. Tetragonal Bi2O3, however, is easily prepared by decomposing bismutite (Bi2O3·CO2) at 400 °C for several hours. The greatest transition expansion occurs at the monoclinic to cubic inversion, and cubic Bi2O3 shows the greatest coefficient of volume expansion. With exposure to air, Bi2O3 carbonates and partially transforms to bismutite and an unknown phase.  相似文献   

11.
The structural properties of La2O3 and Al2O3-La2O3 binary oxides prepared by sol-gel were studied by XRD, HRTEM and UV-vis. The binary oxides with high lanthana contents show an amorphous structure after calcination at 650 °C. At calcination temperatures higher than 1000 °C there is a phase transformation from the amorphous state to the crystalline LaAlO3 with a perovskite structure. The structure of La2O3 is consistent with the hexagonal system; however, some crystalline microdomains with a monoclinic structure were detected by HRTEM. Islands of La2O3 and LaAl11O18 phases were detected at high lanthana concentration in the binary oxide. The modification in the coordination shell of the Al3+ cations due to the interaction with La3+ cations confirms the formation of phases with a perovskite structure and the presence of islands of the LaAl11O18 phase.  相似文献   

12.
In our research it has been firstly found that BaTiO3 materials doped with BaBiO3 only show negative temperature coefficient effect over a wide temperature range. Major phases present in the sintered bodies are BaTiO3 compounds with a perovskite structure and BaBiO3 compounds with a monoclinic structure. Also, at a given BaTiO3 and BaBiO3 content, the influence of La2O3 content on the microstructure and electrical properties has been investigated. The mean grain size of samples decreases with an increase in La2O3 content. However the mean grain size remains unchanged with a further increase in La2O3 content when the La2O3 content in material is more than 0.20. As the amount of La2O3 in BaTiO3-based ceramics thermistors increases, the resistivity decreases to a minimum value and then slowly increases again.  相似文献   

13.
Zirconia-lanthana powders containing 4.5, 7, 10, 15 and 20 mol % La2O3 were prepared by hydrolysis. The hydrolysis process was carried out in a laboratory stainless steel autoclave for their equivalent hydroxides for 2 h at 200‡ C. The powders were investigated using X-ray diffraction, infrared spectrometry, and transmission electron microscopy techniques. No other phases except the cubic phase zirconia of fluorite-type structure were detected. The prepared materials were examined for their thermal stability and phase constitution, by X-ray and infrared analyses, on heating up to 1400‡ C. The cubic phase zirconia remains stable up to 1000‡ C at which it starts to decompose yielding monoclinic zirconia and lanthanum zirconate. At 1200‡ C, the cubic phase nearly disappears in the sample containing 4.5 mol % La2O3. Increasing La2O3 content up to 20 mol % retards its destabilization, reduces the yielded monoclinic phase, and in the same time increases the formed lanthanum zirconate phase. At 1500‡ C only monoclinic ZrO2 and La2Zr2O7 are present. The La2Zr2O7/monoclinic ZrO2 ratio increases with increasing La2O3 content. Pressed specimens of the prepared materials were fired for 2 h at 800 to 1400‡ C. The sintering activity of the prepared powders resulted in a 92% theoretical density body for the 4.5 mol % ZrO2 material. The densification properties in relation to changes in the phase constitution are discussed.  相似文献   

14.
Electrical conductivity measurements have been made as a function of dopant concentration (4 to 8 mol% Sc2O3) in the scandia-zirconia system, All the compositions studied had a tetragonal structure. The hombohedral phase was present only in samples prepared from mechanical mixtures of Sc2O3 and ZrO2. In specimens prepared by coprecipitation, no phase lines were observed and the monoclinic zirconia (m-ZrO2) phase was present for only Sc2O3 contents 5 mol %. The conductivity of Sc2O3-ZrO2 decreased continuously with time up to 300 h anneal time between 700 and 1000° C. X-ray diffraction of coprecipated specimens of 7.8 mol % Sc2O3-ZrO2 composition annealed at 1000° C (28 days), 750° C (42 days) or 460° C (189 days) did not reveal any changes to account for this. However, transmission electron microscopy showed that changes associated with the formation of very fine precipitates had occurred. The activation energy for conduction in the low-temperature region decreased monotonically with decrease in the scandia content. Jumps in the conductivity curves and hysterisis effects were observed in specimens containing m-ZrO2.  相似文献   

15.
In order to ascertain the metastable phase relation in the Cr2O3-Fe2O3 system, the existing phases were investigated by X-ray analysis using samples obtained by heating the coprecipitated powders for 1 h at 600–1000°C. There was a metastable two-phase region of Cr2O3-rich (CC) and Fe2O3-rich (FC) phases below about 940°C. Equilibrium state of 1:1 composition at 600–900°C was considered to be a single phase of the corundum solid solution. The metastable two-phase CC + FC region was suggested to appear probably due to the compositional inhomogeneity in the coprecipitated powders.  相似文献   

16.
The behaviour of three different samples of La2O3 on exposure to atmoshperic CO2 and H2O and the influence of the origin is discussed. The thermal evolution of the samples, stabilized in air for months or even years, has been studied by TG, TPD, IR spectroscopy and X-ray diffraction. BET surface areas of the samples were determined from the corresponding nitrogen adsorption isotherms at 77 K. In all three samples, hydration and carbonation occur in bulk. In accordance with our results, lanthana samples stabilized in air would consist of lanthanum hydroxide, La(OH)3, partially carbonated, La2(OH)6–3x (CO3) x ,(x1). When hexagonal phases of La2O3, obtained by calcining, at 1130 K, the samples stabilized in air were re-exposed, hydration and carbonation levels similar to those observed in the stabilized samples were reached after less than 24 h. Some lanthana samples were soaked in water, at 298 K, and then dried at 380 K. In this way, the evolution of the oxide when treated under similar conditions to those used in both impregnation and ion exchange techniques for preparation of supported metal phases, could be investigated.  相似文献   

17.
The phase transitions in TiO2–Sc2O3 (40–50 mol % Sc2O3) samples prepared from coprecipitated and mechanically activated oxide mixtures are studied. It is shown that heat treatment below 1000°C leads to the formation of nonstoichiometric, metastable cubic phases with a distorted fluorite structure. With increasing temperature, this structure transforms into a stable fluorite-like structure through (low-symmetry) orthorhombic and hexagonal phases, which is associated with the incorporation of OH groups. Characteristically, the phases studied contain nanoscale regions differing in the degree of ordering, which result from internal stress. The internal stress in mechanically activated phases is shown to be fully relieved by about 1300°C.  相似文献   

18.
Cubic and/or monoclinic Y2O3:Eu3+ nanoparticles (10–50 nm) were made continuously without post-processing by single-step, flame spray pyrolysis (FSP). These particles were characterized by X-ray diffraction, nitrogen adsorption and transmission electron microscopy. Photoluminescence (PL) emission and time-resolved PL intensity decay were measured from these powders. The influence of particle size on PL was examined by annealing (at 700–1300°C for 10 h) as-prepared, initially monoclinic Y2O3:Eu3+ nanoparticles resulting in larger 0.025–1 μm, cubic Y2O3:Eu3+. The influence of europium (Eu3+) content (1–10 wt%) on sintering dynamics as well as optical properties of the resulting powders was investigated. Longer high-temperature particle residence time during FSP resulted in cubic nanoparticles with lower maximum PL intensity than measured by commercial micron-sized bulk Y2O3:Eu3+ phosphor powder. After annealing as-prepared 5 wt% Eu-doped Y2O3 particles at 900, 1100 and 1300°C for 10 h, the PL intensity increased as particle size increased and finally (at 1300°C) showed similar PL intensity as that of commercially available, bulk Y2O3:Eu3+ (5 μm particle size). Eu doping stabilized the monoclinic Y2O3 and shifted the monoclinic to cubic transition towards higher temperatures.  相似文献   

19.
Lanthanum acetylacetonate La(C5H7O2)3·xH2O has been used in the preparation of the precursor solution for the deposition of polycrystalline La2O3 thin films on Si(1 1 1) single crystalline substrates. The precursor chemistry of the as-prepared coating solution, precursor powder and precursor single crystal have been investigated by Fourier Transformed Infrared Spectroscopy (FTIR), differential thermal analysis coupled with quadrupole mass spectrometry (TG-DTA-QMS) and X-ray diffraction. The FTIR and X-ray diffraction analyses have revealed the complex nature of the coating solution due to the formation of a lanthanum propionate complex. The La2O3 thin films deposited by spin coating on Si(1 1 1) substrate exhibit good morphological and structural properties. The films heat treated at 800 °C crystallize in a hexagonal phase with the lattice parameters a = 3,89 Å and c = 6.33 Å, while at 900 °C the films contain both the hexagonal and cubic La2O3 phase.  相似文献   

20.
The optical properties (absorption and luminescence) of Ti3+ in a P2O5 Na2O-Al2O3 glass have been studied in the temperature range 12 to 300 K. A very broad infrared emission band at 860 nm, has been observed for the first time in an inorganic glass, when excitation is performed in the Ti3+ absorption band (T2g → Eg transition in cubic field approximation). The spectroscopic characteristics of this system are compared with those of the Ti3+ as a dopant in AL2O3 single crystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号