首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
《合成纤维工业》2016,(1):31-34
以质量比为2∶1的丙酮/N,N-二甲基乙酰胺混合溶液为溶剂配制二醋酸纤维素(CA)溶液,采用静电纺丝制备CA纳米纤维,探讨了CA浓度、纺丝电压、接收距离和溶液推进速度等工艺条件对CA纳米纤维形貌、直径及其分布的影响。结果表明:CA纳米纤维的直径随CA浓度增加而增大,随纺丝电压增大而减小;适当的接收距离和溶液推进速度可以获得直径较小且分布均匀的纤维;当CA质量分数为11%、纺丝电压为30 k V、接收距离为15 cm、溶液推进速度为0.010 m L/min时,纺丝效果好,纤维平均直径约130 nm,且直径分布较均匀。  相似文献   

2.
通过静电纺丝方法,将氯化锂/N,N–二甲基乙酰胺(Li Cl/DMAc)溶解间位芳纶(PMIA)制备了PMIA纳米纤维,探索了溶液浓度、接收距离、纺丝电压及接收速度等工艺参数对纤维形貌及其直径分布的影响。通过扫描电子显微镜观察了PMIA纳米纤维形貌及应用Image-J软件测量统计了PMIA纤维直径。结果表明,溶液浓度为8%~10%、纺丝电压为16~18 k V、接收距离为15~20 cm,接收速度60~80 r/min的范围内,间位芳纶纳米纤维成型良好,直径分布范围为100~120 nm;PMIA纳米纤维直径随着溶液浓度的减小、静电电压的增加而减小,随着接收速度的增加纤维取向增加。  相似文献   

3.
《塑料》2017,(1)
设计了一种批量制备连续纤维的钢丝毛刷辊静电纺丝装置,研究了固定距离时溶液浓度及电压对毛刷PVA溶液静电纺丝产量的影响。考察了不同浓度PVA在不同纺丝距离、纺丝电压、毛刷转速下的纤维直径分布与纤维形貌。借助扫描电镜对制得的纳米纤维形貌进行观察,并应用Nano Measurer软件对纤维的直径及其分布进行了测量统计。综合考察结果,得出最佳的纺丝溶液浓度为12%,接收板距离为10 cm,电压为40 k V。  相似文献   

4.
利用静电纺丝技术制备聚乙烯醇(PVA)纳米纤维材料,通过正交试验调节制备过程中纺丝电压、纺丝距离和纺丝溶液浓度等工艺参数,探究其对PVA纳米纤维直径大小、直径分布以及纤维形貌的影响。结果表明,影响纳米纤维形貌的主要因素排序是纺丝溶液浓度>纺丝距离>纺丝电压,并确定最优水平组合为纺丝电压为20 kV,PVA纺丝溶液浓度为6 %(质量分数,下同),纺丝距离为12 cm。  相似文献   

5.
气流-静电纺丝法制备聚对苯二甲酸乙二酯纳米纤维   总被引:1,自引:1,他引:0  
采用50%苯酚和50%1,1,2,2-四氯乙烷的混合溶液为溶剂,通过气流-静电纺丝法制备了聚对苯二甲酸乙二酯(PET)纳米纤维。利用扫描电镜(SEM),研究了聚合物分子质量、溶液浓度、电压、接收距离(喷丝孔到接收板的距离)对电纺纤维形态结构的影响。结果表明:随着聚合物分子质量和溶液浓度增加,纤维平均直径也随之增加;纤维平均直径随电压的增加而减小;随接收距离的增加,纤维平均直径先减小后增加。最佳工艺条件为:聚合物特性黏度为0.818 dL/g,溶液质量分数为15%,电压为32 kV,接收距离为23 cm,所得PET电纺纳米纤维平均直径为85 nm。  相似文献   

6.
为探究工艺参数对聚乳酸(PLA)/乙酸纤维素(CA)复合纳米纤维膜的影响,通过改变溶液质量分数、PLA与CA质量比、纺丝电压、供液速度、收集距离和辊筒转速等工艺参数,优化试验条件,确定最佳工艺参数。采用场发射扫描电镜观察复合纳米纤维膜的形貌,并使用Nano Measurer 1.2软件对纤维直径分布情况进行分析统计。结果表明,在PLA质量分数为12%、PLA与CA质量比为8∶2、纺丝电压为18 k V、注射泵供液速度为0.6 mL/h、收集距离为18 cm、辊筒转速为600 r/min的条件下,制备的PLA/CA纳米纤维形貌良好、分布均匀,平均直径为310.8 nm。  相似文献   

7.
静电纺丝法纺制聚乳酸纳米纤维无纺毡   总被引:8,自引:0,他引:8  
采用静电纺丝法制备了生物降解聚乳酸(PLLA)纳米纤维无纺毡。分析了纺丝液浓度、电压、接收距离、挤出速度等因素对纤维形态的影响。结果表明:纺丝液的浓度和挤出速度对纤维直径的影响较为明显,溶液挤出速度增大,所得纤维微孔含量及尺寸也增大;适当的电压和接收距离有利于收集无液滴纤维;随着纤维直径的减小,无纺毡的孔径呈减小趋势。在PLLA质量分数为5.7%、挤出速度0.8 mL/h、接受距离 15.5 cm、电压8 kV的静电纺丝条件下,可制备纤维直径为200-400 nm的PLLA纳米纤维无纺毡。  相似文献   

8.
利用静电纺丝技术制备纳米级聚丙烯腈(PAN)纤维,通过正交实验分析了溶液浓度、接收距离、针头探出距离、电压、溶液流速等参数对纤维直径分布及定向性的影响。结果证明,溶液浓度对纤维直径分布及定向性的影响最显著,并选出最优化实验方案。  相似文献   

9.
为了调控聚乳酸(PLA)纳米纤维的孔结构,采用静电纺丝技术,以PLA母粒为原料,三氯甲烷(CF)和N,N-二甲基甲酰胺(DMF)按一定比例混合的溶液为溶剂,制备了平均直径在1.37μm的PLA纳米纤维,并对其结构进行表征。结果表明,PLA纳米纤维的平均直径随着纺丝液中CF含量、聚合物浓度、环境湿度的增加而增大;随纺丝电压和灌注速度的增大而呈减小的趋势。同时,环境湿度对纤维表面孔结构有显著影响。随着湿度的增加,纤维表面孔的分布密度增加,且形状由圆形转变为椭圆形。此外,与表面光滑的PLA纳米纤维(2.4 m2/g)相比,所制备的PLA多孔纤维的比表面积提升了10倍(24.0 m2/g)。  相似文献   

10.
以聚乙烯醇(PVA)为原料、去离子水为溶剂,通过静电纺丝制备PVA纳米纤维膜,利用正交实验探讨静电纺丝过程中纺丝液PVA浓度、纺丝距离、纺丝电压和注射速度对PVA纳米纤维膜形貌及纤维直径的影响,得出制备纤维膜的较佳工艺条件,并分析了纺丝液PVA浓度对纤维膜的力学性能和亲水性能的影响。结果表明:随着纺丝液PVA浓度的增加,PVA纤维的直径逐步变小,直径分布变窄;当纺丝液PVA质量分数为7%、纺丝电压为14 kV、纺丝距离为14 cm、注射速度为0.5 mL/h时,纤维膜的纤维直径最小,为203 nm;正交实验中PVA浓度、纺丝电压、纺丝距离、注射速度4个因素的极差值分别为87.00,49.67,18.33,11.67;纺丝液PVA质量分数从5%增加到7%,纤维膜的断裂强度从2.21 MPa提高至2.81 MPa,断裂伸长率从31.63%提高至56.39%,水接触角从37.7°提高至48.7°。  相似文献   

11.
采用四氢呋喃和无水乙醇为溶剂,利用静电纺丝法制备了聚己内酯(PCL)/聚乙二醇(PEG)共混纳米纤维。研究了共混配比、溶液浓度、无水乙醇的加入以及电纺电压、接收距离等工艺参数对纤维形态和性能的影响。测试结果表明:聚乙二醇和聚己内酯以一定比例共混后改善了聚己内酯纤维毡的亲水性和细胞相容性;随着纺丝原液浓度增加,电纺产品由高分子微/纳米液滴结构渐变为珠状结构较少的平滑纤维,平均纤维直径逐渐增大;一定范围内,纤维平均直径随电压的上升而增大,但与接收距离关系不大;此外,加入无水乙醇后,共混溶液电导率增加,有利于喷射流的劈裂,减少了珠状结构的数量。  相似文献   

12.
采用75%四氢呋喃(THF)和25%N,N-二甲基甲酰胺(DMF)的混合溶液作溶剂,通过气流-静电纺丝法制备了苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS)超细纤维。利用扫描电镜(SEM),研究了溶液浓度、电压、接收距离(喷丝孔到接收板的距离)、喷丝孔内径对静电纺纤维的直径和形貌的影响。研究发现:溶液浓度对电纺纤维的直径和形貌有非常重要的影响,当溶液浓度由10%增加到18%时,电纺纤维平均直径随之成线性增加;当电压由23.8kV增加到33.8kV时,纤维平均直径先减小后增加。最佳工艺条件为:溶液质量分数为14%,电压为28.8kV,接收距离为20cm,喷丝孔内径为0.27mm,所得SBS电纺超细纤维平均直径为429nm。  相似文献   

13.
采用静电纺丝技术,以特殊设计的金属丝螺旋盘绕滚筒作为接收装置,制备了具有一定取向的丝素蛋白(SF)-聚乙烯醇(PVA)共混纳米纤维材料。利用扫描电子显微镜(SEM)对纤维形貌进行观察,并通过Image-Pro Plus软件对纤维细度进行测试,探讨了SF与PVA的配比以及纺丝电压、接收距离等静电纺丝参数对所得纳米纤维形貌、细度及其分布的影响。结果表明:将质量浓度为25 kg/L的SF与质量分数为8%的PVA以质量比15∶3.2共混,并采用20 kV的纺丝电压和13 cm的接收距离静电纺时,所得纳米纤维的平均直径约为238 nm,且直径分布较为均匀。采用该法制得的纳米纤维材料具有一定的纤维取向,有利于细胞生长,可应用于生物医药领域。  相似文献   

14.
以N,N-二甲基甲酰胺(DMF)和四氢呋喃(THF)为混合溶剂配制聚碳酸酯基热塑性聚氨酯(PU)纺丝溶液,通过静电纺丝法制备PU纳米纤维。重点研究了纺丝溶液浓度、混合溶剂中DMF和THF的体积比、纺丝电压和纺丝溶液流速对PU纳米纤维形态、直径及其分散性的影响。结果发现,纺丝液浓度为12%,混合溶剂中DMF与THF体积比为1∶1,纺丝电压为10 kV,纺丝溶液流速为0. 8 m L/h时,通过静电纺丝法制得的PU纳米纤维粗细均匀,表面光滑,纤维之间无粘连现象,形成的纳米纤维膜空隙率高。  相似文献   

15.
采用四氢呋喃和无水乙醇为溶剂,利用静电纺丝法制备了聚己内酯(PCL)/聚乙二醇(PEG)共混纳米纤维。研究了共混配比,溶液浓度,无水乙醇的加入以及电纺电压,接收距离等工艺参数对纤维形态和性能的影响。测试结果表明:聚乙二醇和聚己内酯以一定比例共混后改善了聚己内酯纤维毡的亲水性和细胞相容性;随着纺丝原液浓度增加,电纺产品由高分子微/纳米液滴结构渐变为珠状结构较少的平滑纤维,平衡纤维直径逐渐增大;一定范围内,纤维平均直径随电压的上升而增大,但与接收距离关系不大;此外,加入无水乙醇后,共混溶液电导率增加,有利于喷射流的劈裂,减少了珠状结构的数量。  相似文献   

16.
通过液喷侧吹纺丝方法制备了聚乳酸(PLA)微纳米纤维和PLA/聚丙烯(PP)熔喷复合过滤非织造材料,探讨了液喷工艺参数对PLA微纳米纤维直径和分布的影响,并对不同制备条件下的PLA/PP复合过滤非织造布的力学性能、透气性及过滤性能进行了测试。结果表明,在PLA溶液质量分数为7%,风压为0.3 MPa,接收距离为35 cm,挤出速率分别为15,20,25 m L/h的条件下,可获得直径分别为0.98,1.02,1.12μm的PLA微纳米纤维。当液喷侧吹时间为30 min、挤出速率为20 m L/h时,PLA/PP复合过滤非织造布的透气性下降了52.48%,而过滤阻力、断裂强度和过滤效率分别提高了22.79%,94.51%和46.84%,其综合性能得到明显改善。  相似文献   

17.
靳钰  李彦凝  聂俊  杨冬芝 《塑料》2007,36(6):49-52
利用电纺丝技术制备了明胶纳米纤维,系统考察了溶液浓度、电场强度、纺丝距离、喷丝口内径4种因素对纤维膜的形貌以及平均直径的影响;在此基础上,制备了具有较好力学性能的明胶-聚乙烯醇/溶菌酶复合纳米纤维膜,考察了其药物释放性能.结果表明,在上述几种工艺因素中,明胶的浓度对明胶纳米纤维的可纺性以及直径影响较大,当溶液浓度在7%-23%之间能获得连续纤维,并随着浓度的增大,纤维直径也随之增大.纺丝距离10cm、纺丝电压12.5kV是实验中获得连续纤维的临界工艺条件.药物释放结果发现明胶-聚乙烯醇复合纳米纤维膜对溶菌酶的释放具有一定的缓释效果.  相似文献   

18.
用溶液静电纺丝方法制备了聚醚酮酮超细纤维,用扫描电子显微镜研究了实验过程中纺丝电压、纺丝距离、流量、纺丝液浓度对于聚醚酮酮纤维直径和形貌的影响,并对多个纺丝参数的影响规律进行了分析。实验结果表明,在一定条件下纺丝电压和纺丝距离对纤维直径影响较小,而流量和纺丝液浓度能显著影响纤维直径,在小流量、低浓度容易得到较细的纤维,并且纤维直径分布集中。  相似文献   

19.
以聚乳酸(PLA)为原料,分别用三种不同的溶剂制得三种纺丝液并采用静电纺丝法,制备了聚乳酸纳米纤维。探讨了溶剂、电压、溶液质量分数对纤维形貌和直径的影响。结果表明,溶剂是决定PLA超细纤维形成的关键因素,三氯甲烷(CHC l3)与二甲基甲酰胺(DMF)混合溶剂(体积比为9∶1)是PLA静电纺丝较为理想的溶剂。在PLA质量分数为6%、极距15 cm、电压25 kV,流量2.5 mL/h的工艺条件下,可制备直径为1 200 nm左右的PLA纤维。  相似文献   

20.
利用静电纺丝法制备了超细聚ε-己内酯(PCL)纤维;借助扫描电镜仪和差示扫描量热仪表征了PCL纤维的形态与热性能;研究了电纺过程中溶液浓度、电压、接收距离和纺丝速度对纤维形态的影响。结果表明:当纺丝电压为10 kV,接收距离为15 cm,纺丝速度为2 mL/min时,纺丝液中PCL质量分数为6%~12%能获得连续无串珠的纤维;纺丝电压为8~12 kV,电纺过程稳定;接收距离对纤维的直径和形貌无明显影响;与流延成型的PCL膜相比,电纺PCL纤维具有较低的结晶度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号