首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Hui Xia  M.O. Lai 《Electrochimica acta》2009,54(25):5986-5991
Kinetic and transport parameters of Li ion during its extraction/insertion into thin film LiNi0.5Mn0.5O2 free of binder and conductive additive were provided in this work. LiNi0.5Mn0.5O2 thin film electrodes were grown on Au substrates by pulsed laser deposition (PLD) and post-annealed. The annealed films exhibit a pure layered phase with a high degree of crystallinity. Surface morphology and thin film thickness were investigated by field emission scanning electron microscopy (FESEM). The charge/discharge behavior and rate capability of the thin film electrodes were investigated on Li/LiNi0.5Mn0.5O2 cells at different current densities. The kinetics of Li diffusion in these thin film electrodes were investigated by cyclic voltammetry (CV) and galvanostatic intermittent titration technique (GITT). CV was measured between 2.5 and 4.5 V at different scan rates from 0.1 to 2 mV/s. The apparent chemical diffusion coefficients of Li in the thin film electrode were calculated to be 3.13 × 10−13 cm2/s for Li intercalation and 7.44 × 10−14 cm2/s for Li deintercalation. The chemical diffusion coefficients of Li in the thin film electrode were determined to be in the range of 10−12-10−16 cm2/s at different cell potentials by GITT. It is found that the Li diffusivity is highly dependent on the cell potential.  相似文献   

2.
The electrochemical reduction of oxygen on thin-film platinum electrodes in 0.1 M HClO4 and 0.05 M H2SO4 solutions has been investigated using the rotating disk electrode (RDE) method. Thin films of Pt (0.25-20 nm thick) were prepared by vacuum evaporation onto glassy carbon substrate. The surface morphology of Pt films was examined by transmission electron microscopy (TEM). The specific activity of O2 reduction was higher in HClO4 and decreased with decreasing film thickness. In H2SO4, the specific activity was lower and appeared to be independent of the Pt loading. The values of Tafel slopes close to −120 mV dec−1 in high current density range and −60 mV dec−1 in low current density range were obtained for all electrodes in both solutions, indicating that the mechanism of O2 reduction is the same for thin-film electrodes as for bulk Pt. The number of electrons transferred per O2 molecule was close to four for all thin Pt films studied.  相似文献   

3.
The electrochemical reduction of oxygen on thin Pd films with a nominal thickness of 0.25-10 nm on polycrystalline Au substrate (Pd/Au) was studied. The Pd films were prepared by electron beam evaporation and oxygen reduction was studied in 0.1 M HClO4 and 0.05 M H2SO4 solutions using the rotating disk electrode (RDE) method. The surface morphology of Pd overlayers was examined by scanning tunnelling microscopy (STM). O2 reduction predominantly proceeds through 4e pathway on all Pd/Au electrodes. The specific activity (SA) of oxygen reduction was lower in H2SO4 solution and decreased slightly with decreasing the Pd film thickness. In HClO4, the SA was higher and not significantly dependent on the film thickness. The Tafel slope values close to −60 mV at low current densities and −120 mV at high current densities were found for all electrodes.  相似文献   

4.
The sol-gel technique was used to fabricate nickel powder carbon composite electrode (CCE). The nickel powder successfully used to deposit NiOx thin film on conductive carbon ceramic electrode for large surface area catalytic application. Repetitive cycling in potential range −0.2 to 1.0 V was used to form of a thin nickel oxide film on the surface carbon composite electrode. The thin film exhibits an excellent electro-catalytic activity for oxidation of SO32−, S2O42−, S2O32−, S4O62− and S2− in alkaline pH range 10-14. Optimum pH values for detection of all sulfur derivatives is 13 and catalytic rate constants are in range 2.4 × 103-8.9 × 103 M−1 s−1. The hydrodynamic amperometry at rotating modified CCE at constant potential versus reference electrode was used for detection of sulfur derivatives. Under optimized conditions the calibration plots are linear in the concentration range 10 μM-15 mM and detection limit 1.2-34 μM and 0.53-7.58 nA/μM (sensitivity) for electrode surface area 0.0314 cm2. The nickel powder doped modified carbon ceramic electrode shows good reproducibility, a short response time (2.0 s), remarkable long term stability, less expense, simplicity of preparation, good chemical and mechanical stability, and especially good surface renewability by simple mechanical polishing and repetitive potential cycling. This sensor can be used into the design of a simple and cheap chromatographic amperometry detector for analysis of sulfur derivatives.  相似文献   

5.
The preparation of nickel tungstate (NiWO4) thin film by spray pyrolysis (SP) with ammonical solution is presented. The phase and surface morphology characterizations have been carried out by X-ray diffraction (XRD) and scanning electron microscope (SEM) analysis, respectively. The study of optical absorption spectrum in the wavelength range 350-850 nm shows the presence of direct as well as indirect band gaps in the material, respectively found to be 2.28 and 2.00 eV. The thin film material shows semiconducting behaviour and highly resistive at room temperature as evident from its dc electrical conductivity measurements obtained by the Two Point Probe method in the temperature range 310-500 K. The thin films deposited on fluorine doped tin oxide (FTO) coated conducting glass substrates are used as photoanode in photovoltaic electrochemical (PVEC) cell. The PVEC cell configuration is: NiWO4|Ce4+, Ce3+|Pt; 0.1 M in 0.1N H2SO4. The PVEC characterization reveals the fill factor and power conversion efficiency to be 0.47 and 0.78%, respectively. The flat band potential is found to be −0.32 V (SCE).  相似文献   

6.
Bi2Te3−ySey thin films were grown on Au(1 1 1) substrates using an electrochemical co-deposition method at 25 °C. The appropriate co-deposition potentials based on the underpotential deposition (upd) potentials of Bi, Te and Se have been determined by the cyclic voltammetric studies. The films were grown from an electrolyte of 2.5 mM Bi(NO3)3, 2 mM TeO2, and 0.3 mM SeO2 in 0.1 M HNO3 at a potential of −0.02 V vs. Ag|AgCl (3 M NaCl). X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) were employed to characterize the thin films. XRD and EDS results revealed that the films are single phase with approximate composition of Bi2Te2.7Se0.3. SEM studies showed that the films are homogeneous and have micronsized granular crystallites.  相似文献   

7.
The 3D mesoporous, well crystalline RuO2 film prepared via the evaporation-induced self-assembled method (EISA) successfully demonstrates the extremely high power performances (e.g., excellent capacitive behavior at 10,000 mV s−1, ultrahigh-frequency capacitive responses (the absence of a knee point in the Nyquist plot), and 2.6 MW kg−1 with an acceptable energy density of 4.6 Wh kg−1). These excellent capacitive performances were identified by means of voltammetric and electrochemical impedance spectroscopic (EIS) analyses. The mesoporous (with mean pore spacing of 18.1 nm) and crystalline nature of this film was characterized by means of the field emission scanning electron microscopy (FE-SEM), Brunaur-Emmett-Teller (BET) method, small-angle X-ray scattering (SAXRS), high-resolution transmission electron microscopy (HR-TEM), electron diffraction (ED), and X-ray diffraction (XRD) analyses. This mesoporous, well crystalline RuO2 film constrains the redox transition to the superficial region meanwhile the tailored mesoporous structure increases the electrochemically active centers, promotes the penetration of electrolytes, provides the “proton reservoirs”, and enhances the rate of electron transport simultaneously for the ultrahigh power application. The specific capacitance of this mesoporous RuO2 can be enhanced from 84 to 185 F g−1 after the microwave-assisted hydrothermal treatment.  相似文献   

8.
Cyclic voltammetry was used to investigate the electrochemical behaviour of the tungsten oxide films toward the electroreduction of BrO3, ClO2 and NO2 ions in acidic medium. The effects of the temperature, scan rate, pH, chemical composition of the electrolytic solutions, were investigated and the reduction mechanism was critically discussed.The reduction currents, evaluated in cyclic voltammetry and measured at −0.250 V versus SCE, increased linearly on increasing analyte concentration up to 20, 55 and 45 mM for nitrite, chlorite and bromate ions, respectively. The detection limits, evaluated in cyclic voltammetry, were 0.1, 0.4 and 0.7 mM for BrO3, ClO2 and NO2, respectively.The tungsten oxide film was successfully characterized as an amperometric sensor for the analytical determination of BrO3, ClO2 and NO2 ions in flowing stream. Operating under constant applied potential of −0.3 V versus Ag/AgCl the good reproducibility of the peak height and background current level during consecutive injections, indicates the absence of fouling effects and the potential applicability of the amperometric sensor for the routine analytical determination of the investigated inorganic ions. Considering the low values of the background currents (ca. 1.1 ± 0.1 μA) obtained in acidic and not deoxygenated carrier electrolyte, the tungsten sensing electrode seems to compete favourably with other common sensors for the amperometric determination of electroactive molecules under cathodic conditions.The X-ray photoelectron spectroscopy technique (XPS) was used in order to evaluate the chemical composition of the tungsten film upon electrochemical treatment in 0.1 M H2SO4 solution. Independently of the electrochemical treatment in acid solution, the tungsten surface electrode is generally composed by 50-60% of W0, 35-40% of W6+ and traces of W2+ oxide species.  相似文献   

9.
Lead dioxide (PbO2) thin films were prepared on Ti/SnO2 substrates by means of electrodeposition method. Galvanostatic technique was applied in PbO2 film formation process, and the effect of deposition current on morphology and crystalline form of the PbO2 thin films was studied by means of scanning electron microscopy (SEM) and X-ray diffraction (XRD). The energy storage capacity of the prepared PbO2 electrode was investigated by means of cyclic voltammetry (CV) and charge/discharge cycles, and a rough surface structure PbO2 film was selected as positive electrode in the construction of PbO2/AC hybrid capacitor in a 1.28 g cm−3 H2SO4 solution. The electrochemical performance was determined by charge/discharge tests and electrochemical impedance spectroscopy (EIS). The results showed that the PbO2/AC hybrid capacitor exhibited high capacitance, good cycling stability and long cycle life. In the voltage range of 1.8-0.8 V during discharge process, considering the weight of all components of the hybrid capacitor, including the two electrodes, current collectors, H2SO4 electrolyte and separator, the specific energy and power of the device were 11.7 Wh kg−1 and 22 W kg−1 at 0.75 mA cm−2, and 7.8 Wh kg−1 and 258 W kg−1 at 10 mA cm−2 discharge currents, respectively. The capacity retains 83% of its initial value after 3000 deep cycles at the 4 C rate of charge/discharge.  相似文献   

10.
Four-layer SrTiO3/BaTiO3 thin films ((ST/BT)4) with various thicknesses deposited on Pt/Ti/SiO2/Si substrates at 500 °C by double target RF magnetron sputtering have been investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), profilometry, capacitance-voltage and current-voltage measurements. The XRD patterns reveal the frame formation of the sputter deposited (ST/BT)4 with controlled modulation. The adhesion between the Pt bottom electrode layer and the BT layer is excellent. The dielectric constant of the (ST/BT)4 multilayer thin film increases with increasing film thickness. The effects of temperature, frequency, and bias voltage on the dielectric constant of the (ST/BT)4 multilayer thin films are discussed in detail. The leakage current density of the (ST/BT)4 multilayer with a thickness of 450.0 nm is lower than 1.0 × 10−8 A/cm2 for the applied voltage of less than 5 V, showing that the multilayer thin films with such a characteristic could be applied for use in dynamic random access memory (DRAMs) capacitors.  相似文献   

11.
R.Z. Hu 《Electrochimica acta》2009,54(10):2843-2850
Sn/Cu6Sn5 alloy composite thin films were directly prepared by electron-beam deposition for anodes of lithium ion batteries. The thin film was comprised of micro/sub-microcrystalline Sn and Cu6Sn5, where the polyhedral micro-sized Sn grains were uniformly dispersed in the loose Cu6Sn5 matrix. Lithiation reaction kinetics were confirmed to be controlled by a diffusion step and the diffusion coefficient of Li+ in the thin film anode was determined to be 1.91 × 10−7 cm2/s. The galvanostatic cycling behavior of Sn/Cu6Sn5 composite thin film anodes was studied under different conditions. Stable capacities of more than 370 mAh/g were obtained by discharging from 1.25 to 0.1 V. Structure changes and fading mechanism of the thin film electrodes was discussed based on SEM, XRD and EDX investigations. The present results demonstrated that the multi-phase composite structure can improve electrochemical performance of the Cu-Sn alloy thin film electrodes.  相似文献   

12.
In this work we have explored the electrochemical properties of two lithiated iron oxide powders for supercapacitor purposes. These samples mainly consisted of α-LiFeO2 in nanosized or micrometric form. Electrolyte was an aqueous 0.5 M Li2SO4 solution and voltage range studied was between 0 and −0.7 V vs. a Ag/AgCl reference electrode. As expected, electrochemical performance was dependent on the particle size. When electrolyte was deaerated a stable capacitance of ≈50 F g−1 is provided by the nanosized sample for several hundred cycles. Other sulfate based salts (Na2SO4, K2SO4, Cs2SO4) were investigated as electrolytes but only Li2SO4 leads to a stable capacitance upon cycling, probably due to lithium intercalation. An hybrid cell consisting of this sample and MnO2 as negative and positive electrodes, respectively, delivered 0.3 F cm−2 (10 F g−1). Although these values are lower than reported for other aqueous hybrid cell, α-LiFeO2/MnO2 asymmetric capacitor is interesting from both, an economic and an environmental point of view.  相似文献   

13.
The rapid thermal annealing (RTA) process was employed to obtain crystalline LiCoO2 thin films. XRD analyses of the LiCoO2 thin film show increased crystallinity with an increase in the RTA time. The Auger electron spectroscopic analysis of the LiCoO2 film strongly suggests that the RTA process is more advantageous to obtain a stable inter layer between the substrate and the deposited film and between each deposited layer than the conventional annealing process. All-solid-state thin film cells composed of Li/lithium phosphorous oxynitride (Lipon)/LiCoO2 systems were fabricated using the LiCoO2 cathode treated with RTA. The optimum condition of RTA would be 900 s at 650 °C, which exhibited a good rate capability for high power applications. Two cells were connected in parallel to obtain a higher discharge current, and they showed a specific capacity of 38.4 μAh cm−2 μm−1 even at a 25C rate (current density: 7.96 mA cm−2).  相似文献   

14.
Nanowire-structured MnO2 active materials were prepared by a chemical precipitation method and their supercapacitive properties for use in the electrodes of supercapacitors were investigated by means of cyclic voltammetry in an aqueous gel electrolytes consisting of 1 M Na2SO4 and fumed silica (SiO2). The MnO2 electrode showed a maximum specific capacitance of 151 F g−1 after 1000 cycles at 100 mV s−1 when using the gel electrolyte containing 3 wt.% of SiO2, which is higher than 121 F g−1 obtained when using the 1 M Na2SO4 liquid electrolyte alone.  相似文献   

15.
The electrosynthesis of polyaniline on the bare aluminum and pre-treated aluminum surface achieved in aqueous H2PtCl6 solution saturated with NaF for few seconds is described. The effect of some factors such as pre-treatment time, aniline and sulfuric acid concentrations on the electropolymerization process was investigated and optimum conditions were obtained. The stability of polyaniline film on the pre-treated aluminum electrode (Al-Pt) was studied as function of the potential imposed on the electrode. For applied electrode potentials of 0.1-0.7 V, the first-order degradation rate constant, k, of polyaniline film varies between 1 × 10−6 and 2 × 10−5 s−1, and a relatively low slope (i.e. 2.1) was obtained for the plot of log k versus E. The coatings were characterized by scanning electron microscopy (SEM), and cyclic voltammetric behavior of the polyaniline-deposited Al electrode (Al/PANI) and polyaniline-deposited Al-Pt electrode (Al-Pt/PANI) in 0.1 H2SO4 solutions is described. The electrocatalytic activity of the Al-Pt/PANI electrode against para-benzoquinone/hydroquinone (Q/H2Q) and Fe(CN)63−/Fe(CN)64− redox systems was investigated and the obtained results are compared with those obtained on Al/PANI and bulk Pt electrodes.  相似文献   

16.
Amorphous LiCoO2 thin films were deposited on the NASICON-type glass ceramics, Li1+x+yAlxTi2−xSiyP3−yO12 (LATSP), by radio frequency (RF) magnetron sputtering below 180 °C. The as-deposited LiCoO2 thin films were characterized by X-ray diffraction, scanning electron microscopy and atomic force microscope. All-solid-state Li/PEO18-Li (CF3SO2)2N/LATSP/LiCoO2/Au cells were fabricated using the amorphous film. The electrochemical performance of the cells was investigated by galvanostatic cycling, cyclic voltammetry, potentiostatic intermittent titration technique and electrochemical impedance spectroscopy. It was found that the amorphous LiCoO2 thin film shows a promising electrochemical performance, making it a potential application in microbatteries for microelectronic devices.  相似文献   

17.
Transparent and adherent CeO2-ZrO2 thin films having film thicknesses ∼543-598 nm were spray deposited onto the conducting (fluorine doped tin oxide coated glass) substrates from a blend of equimolar concentrations of cerium nitrate hexahydrate and zirconium nitrate having different volumetric proportions (0-6 vol.% of Zr) in methanol. CeO2-ZrO2 films were polycrystalline with cubic fluorite crystal structure and the crystallinity was improved with increasing ZrO2 content. Films were highly transparent (T ∼ 92%), showing decrease in band gap energy from 3.45 eV for pristine CeO2 to 3.08-3.14 eV for CeO2-ZrO2 films. The different morphological features of the film obtained at various CeO2-ZrO2 compositions had pronounced effect on the ion storage capacity and electrochemical stability. CeO2-ZrO2 film prepared at 5 vol.% Zr concentration exhibited higher ion storage capacity of 24 mC cm−2 and electrochemical stability of 10,000 cycles in 0.5 M LiClO4 + PC electrolyte due to its film thickness (584 nm) coupled with relatively larger porosity (8%). The optically passive behavior of such CeO2-ZrO2 film (with 5 vol.% Zr) is affirmed by its negligible transmission modulation irrespective of repeated Li+ and electron insertion/extraction. The coloration efficiency of spray deposited WO3 thin film is found to enhance from 47 to 107 cm2 C−1 when CeO2-ZrO2 is coupled as a counter electrode with WO3 in an electrochromic device (ECD). These films can be used as stable ‘passive’ counter electrodes in electrochromic smart windows as they retain full transparency in both the oxidized and reduced states and ever-reported longevity.  相似文献   

18.
In order to produce thin films of crystalline V2O5, vanadium metal was thermally oxidised at 500 °C under oxygen pressures between 250 and 1000 mbar for 1-5 min. The oxide films were characterised by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), X-ray diffraction (XRD) and Rutherford backscattering spectrometry (RBS). The lithium intercalation performance of the oxide films was investigated by cyclic voltammetry (CV), chronopotentiometry and electrochemical impedance spectroscopy (EIS). It was shown that the composition, the crystallinity and the related lithium intercalation properties of the thin oxide films were critically dependent on the oxidation conditions. The formation of crystalline V2O5 films was stimulated by higher oxygen pressure and longer oxidation time. Exposure for 5 min at 750 mbar O2 at 500 °C resulted in a surface oxide film composed of V2O5, and consisting of crystallites up to 200 nm in lateral size. The thickness of the layer was about 100 nm. This V2O5 oxide film was found to have good cycling performance in a potential window between 3.8 and 2.8 V, with a stable capacity of 117 ± 10 mAh/g at an applied current density of 3.4 μA/cm2. The diffusion coefficients corresponding to the two plateaus at 3.4 and 3.2 V were determined from the impedance measurements to (5.2 and 3.0) × 10−13 cm2 s−1, respectively. Beneath the V2O5 layer, lower oxides (mainly VO2) were found close to the metal. At lower oxygen pressure and shorter exposure times, the oxide films were less crystalline and the amount of V4+ increased in the surface oxide film, as revealed by XPS. At intermediate oxygen pressures and exposure times a mixture of crystalline V2O5 and V6O13 was found in the oxide film.  相似文献   

19.
Degradation of Disperse Orange 1, Disperse Red 1 and Disperse Red 13 dyes has been performed using electrochemical oxidation on Pt electrode, chemical chlorination and photoelectrochemical oxidation on Ti/TiO2 thin film electrodes in NaCl or Na2SO4 medium. 100% discoloration was obtained for all tested methods after 1 h of treatment. Faster color removal was obtained by photoelectrocatalytic oxidation in 0.1 mol L−1 NaCl pH 4.0 under UV light and an applied potential of +1.0 V (vs SCE reference electrode), which indicates also values around 60% of TOC removal. The conventional chlorination method and electrochemical oxidation on Pt electrode resulted in negligible reduction of TOC removal. All dyes showed positive mutagenic activity in the Salmonella/microsome assay with the strain TA98 in the absence and presence of S9 (exogenous metabolic activation). Nevertheless, there is complete reduction of the mutagenic activity after 1 h of photoelectrocatalytic oxidation, suggesting that this process would be good option to remove disperse azo dyes from aqueous media.  相似文献   

20.
The electrochemical oxidation of neutral red in 0.5 mol dm−3 H2SO4 solution was carried out by using repeated potential cycling between −0.20 and 1.20 V (versus SCE). The polymer film was electrochemically deposited on a platinum anode and had an electrochemical activity in the solution of 0.5 mol dm−3 Na2SO4 with pH ≤ 4.0. The result from the X-ray photoelectron spectroscopy (XPS) experiment shows that the anions can be doped into the polymer film during the electropolymerization reaction of neutral red. The scanning electron microscopy (SEM) micrograph shows the surface of poly(neutral red) film deposited on the platinum foil is covered with a micro-structured network of mass interwoven fibers with a diameter of 2-4 μm. A straight fiber of the unsystematic micro-fibers is longer than 0.4 mm. The UV-vis spectrum and infrared spectrum (IR) of the polymer are different from those of the monomer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号