首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《分离科学与技术》2012,47(9):1383-1389
The facilitated transport of Cu(II) ions from different aqueous nitrate source phases (c Me = 0.001 M, pH = 6.0) across supported (SLMs) and polymer inclusion membranes (PIMs) doped with 1-hexyl-2-methylimidazole as ion carrier was reported. The membrane is characterized by means of atomic force microscopy (AFM). The results show that Cu2+ can be separated very effectively from other transition metal cations as Zn2+, Co2+, and Ni2+ from different equimolar mixtures of these ions. The highest initial fluxes of Cu(II) were found for PIM, while lower values were observed for SLM. However, after taking into account the morphology of the membranes (porosity, tortuosity), the values of the initial flux of Cu(II) transport across PIM is less than that across SLM. The recovery factor of Cu2+ ions during transport across PIM from different mixtures of cations is above 91% after 24 hrs and above 76% during transport across SLM. Also, the stability of PIM and SLM doped with 1-hexyl-2-methylimidazole was confirmed in replicate experiments.  相似文献   

2.
The ability of 4-(pyrrole-1-yl) benzoic acid (PyBA) to form monolayer-type carboxylate-derivatized ultra-thin organic films on solid electrode surfaces was explored here to attract coordinatively and immobilize Ni2+ ions at the electrode/electrolyte interface. In the next step, the system was exposed to Fe(CN)63− or Fe(CN)64− solution to form a robust nickel hexacyanoferrate (NiHCF) layer. By repeated and alternate treatments in solutions of PyBA, Ni2+ cations, and Fe(CN)63− or Fe(CN)64− anions, the amount of the material could be increased systematically in a controlled fashion to form three-dimensional multilayered NiHCF-based assemblies. The layer-by-layer method was also extended to the growth of hybrid conducting polymer stabilized NiHCF films in which the initial PyBA-anchored NiHCF layer (formed on glassy carbon) was subsequently exposed (a desired number of times) through alternate immersions to the monomer (3,4-ethylenedioxythiophene), Fe(CN)63− and Ni2+ solutions. During voltammetric potential cycling (electropolymerization) in the external supporting electrolyte solution, poly(3,4-ethylenedioxythiophene) or PEDOT linked NiHCF-based multilayered films were produced. They were characterized by good stability and high dynamics of charge transport.  相似文献   

3.
Reaction of Cu(BF4)2 salt with the polymer [NP(OC6H4C(O)C–OC6H5)2] n (1) in THF affords three new polymers gels containing varied copper (II) ions contents, (2), (3), and (4). The nature of the copper (II) ions in the gel (2)(4) was examined by IR spectroscopy, solid state 31P, 13C and 63Cu NMR spectroscopy and EPR spectroscopy. Despite the copper content, the gels were insulators as measured by complex impedance spectroscopy. SEM images show a uniform distribution of the Cu (II) ions and a most porous morphology than those without copper polymer. TEM images show the formation of small aggregates being smallest for, gel (2) of about 200 nm. All the data suggest the Cu2+ centers behave as a solid dilute into the polyphosphazenes.  相似文献   

4.
A novel hierarchically imprinted cross-linked poly(acrylamide-co-ethylene glycol dimethacrylate) using a double-imprinting approach for the Cu2+ selective separation from aqueous medium was prepared. In the imprinting process, both Cu2+ ions and surfactant micelles (cetyltrimethylammonium bromide – CTAB) were employed as templates. The hierarchically imprinted organic polymer named (IIP-CTAB), single-imprinted (IIP-no CTAB) and non-imprinted (NIP-CTAB and NIP-no CTAB) polymers were characterized by SEM, FTIR, TG, elemental analysis and textural data from BET (Brunauer–Emmett–Teller) and BJH (Barrett–Joyner–Halenda). Compared to these materials, IIP-CTAB showed higher selectivity, specific surface area and adsorption capacity toward Cu2+ ions. Good selectivity for Cu2+ was obtained for the Cu2+/Cd2+, Cu2+/Zn2+ and Cu2+/Co2+ systems when IIP-CTAB was compared to the single-imprinted (IIP-no CTAB) and non double-imprinted polymer (NIP-CTAB), thereby confirming the improvement in the polymer selectivity due to double-imprinting effect. For adsorption kinetic data, the best fit was provided with the pseudo-second-order model for the four materials, thereby indicating the chemical nature of the Cu2+ adsorption process. Cu2+ adsorption under equilibrium was found to follow dual-site Langmuir–Freundlich model isotherm, thus suggesting the existence of adsorption sites with low and high binding energy on the adsorbent surface. From column experiments 600 adsorption–desorption cycles using 1.8 mol L−1 HNO3 as eluent confirmed the great recoverability of adsorbent. The synthesis approach here investigated has been found to be very attractive for the designing of organic ion imprinted polymer and can be expanded to the other polymers to improve performance of ion imprinted polymers in the field of solid phase extraction.  相似文献   

5.
The chelation behavior of poly(β‐diketone), polymer I, and poly(β‐diketone) oxime, polymer II, toward the divalent metal ions, Cu2+, Zn2+, Ni2+, and Cd2+, and the trivalent lanthanide metal ions, La3+, Nd3+, Sm3+, Gd3+, and Tb3+ was investigated by a batch equilibration technique as a function of contact time, pH, and counter ion. Polymer II exhibited improved chelation characteristics toward lanthanide metal ions in comparison with polymer I and the metal‐ion uptake follows the order Tb3+ ≈ Gd3+ ≈ Sm3+ > Nd3+ ≈ La3+. On the other hand, polymer I showed relatively higher capacity than polymer II, toward the investigated divalent metal ions, where the metal‐ion uptake follows the order Cu2+ > Cd2+ ≈ Zn2+ > Ni2+. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

6.
《Ceramics International》2022,48(20):29770-29781
The substituted (Ca2+/Cu2+), and co-substituted (Cu2+/Zn2+), (Cu2+/Sr2+), and (Sr2+/Mn2+) β-tricalcium phosphate (β-TCP)-based Ca3-2x(MˊMˊˊ)x(PO4)2 (M = Zn2+, Cu2+, Mn2+ and Sr2+) solid solutions have been synthesized using solid-state route. The powder X-ray diffraction study shows the formation of β-TCP-type structure as the main phase in all solid solutions. The crystal structures and chemical compositions were approved using Fourier-transform infrared (FT-IR) absorption spectra and energy-dispersive X-ray spectrometry (EDX) data, respectively. The unit cell parameters and volume of as-synthesized samples directly depend on the radius of the incorporated ions. The limits of the single-phase solid solutions were found based on the possible occupation of the crystal sites in β-TCP structure. For the divalent ions with small radii, such as Cu2+ or Zn2+, the limit composition was found as Ca2.5710.429–xMˊˊx(PO4)2 for Mˊ and Mˊˊ – Cu2+ and Zn2+. The enlargement of the unit cell by incorporation of Sr2+ allows to extend the limit of solid solutions up to Ca2.5Sr0.5–xx(PO4)2 for Mˊ – Cu2+ or Mn2+. The antibacterial properties were studied on 4 bacteria (S. aureus, P. aeruginosa, E. coli and E. faecalis) and 1 fungus (C. albicans). It has been showed that co-doped Ca2.5Sr0.25Cu0.25(PO4)2 sample exhibits the highest antimicrobial activity resulting in 92%, 96% and 96% inhibition growth rate for S. aureus, P. aeruginosa and E. faecalis, respectively. The antimicrobial properties are strongly related to the occupation of the crystal sites in the β-TCP structure by doping ions.  相似文献   

7.
The benzimidazole containing ligand 1,3-bis(benzimidazol-2-yl)propylamine (bbpaH) was anchored onto poly(glycidyl methacrylate-co-trimethylolpropane trimethacrylate) (GMT) and onto the thiirane analogue of poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) (GME-S). Abbreviations of the modified polymers are GMT-bbpaH and GME-S-bbpaH. A multistep synthesis was applied in an attempt to increase the ligand concentration on the polymer GMT, This resulted in the resin GMT-bbpaH(ind) of which the solid state CP MAS 13C-NMR data showed that in this case only a monobenzimidazole was formed, i.e. only the 3-benzimidazole group was formed.Batch extraction capacities were determined for the chloride salts of Cu2+, Ni2+, Co2+, Cd2+, Zn2+ and Ca2+ in the pH range 0.9–6.0 in buffered solutions at room temperature. All three resins show a high selectivity for Cu2+ under competitive conditions, with maximum ligand occupations of 54%, 64% and 27% for GMT-bbpaH, GME-S-bbpaH and GMT-bbpaH(ind), respectively. The resin GMT-bbpaH also takes up some Zn2+ ions at pH > 4.5, the maximum ligand occupation being 17%. The resin GME-S-bbpaH shows some affinity for Zn2+ and Cd2+ ions in this pH range, with ligand occupations of 17% and 7%, respectively. Only GMT-bbpaH(ind) shows complete selectivity for Cu(II) at pH > 3, although the maximum Cu2+-uptake capacity is rather low.Kinetic experiments showed that the oxirane derivative exhibits a faster uptake kinetics compared with the thiirane analogue. Incomplete stripping of the Cu(II)-loaded ion-exchange resins and loss of Cu(II)-uptake capacity was observed during the regeneration experiments.  相似文献   

8.
The interface behaviour in the facilitated co-transport of Ag(I), Cu(II) and Zn(II) ions through supported liquid membranes (SLMs) made of a flat-sheet polypropylene membrane support containing cryptands (2.2.2 or 2.2.1) as carriers was studied. The liquid-liquid extraction tests showed a maximum distribution coefficient when the carrier concentration was greaterthan 10−4M. In transport experiments the transmembrane flux increased with increasing carrier concentration reaching a limiting value at greater than 10−3M concentration. The calculation ofthe diffusion coefficients in membranes showed ahigherdiffusivityof2.2.2-metal complexes with respect to 2.2.1-metal complexes for silver ions. A sequence of diffusivity D(Ag+)>D(Cu2+)>D(Zn2+) was obtained, but carrier 2.2.1 showed a higher selectivity through copper ions. A sequence of diffusivity D(Cu2+)>D(Zn2+)>D(Ag+) was obtained. The diffusivity was significantly higher when using Celgard 2500 support compared to Celgard 2400 or 2402. Variable metal ion concentrations in the feed phase fluxes almost zero, at less than 10−2 M concentration, were obtained. In the transient state of the transport through the SLM, different molar flow rates at the feed-membrane and membrane-strip interfaces were observed. The selectivity of the interfaces containing 2.2.2 in the separation binary mixtures of ions showed the following separation factors: SFAgZn = 2.50, SFAgCu = 1.64, SFcuZn = 1.42.  相似文献   

9.
The interaction of poly(ethylene glycol) M n= 3000 with copper I and II ions in aqueous-acidic media was studied by investigation of the specific electrical conductivity, optical density and the cyclic voltamperometric curves in Cu+ and Cu2+ solutions. The results suggest the formation of complexes of the {Cu+(-EO-)3(x – 1)H2O} and {Cu2+(-EO-)4.(y – 1)(H2O)2} types. In the case when {–CH2CH2-O-} n and Cl are simultaneously present in the copper electrolyte, the possibility of simultaneous complex formation between both copper ions and ethylene oxide units, and copper ions and chloride ions is considered. The strong increase in copper electrodeposition over-potential after the addition of polyethers to the electrolytes containing brighteners is explained by the formation of these complexes.  相似文献   

10.
《Ceramics International》2022,48(10):13833-13841
The current work describes the synthesis, structure, magnetic and optical properties of Cu1+ based delafossite oxides, Cu3(MFeSb)O6 (M = Na, Li) synthesized by the topotactic ion-exchange reactions (around 400 °C) of CuCl with Na4FeSbO6 and Na3LiFeSbO6 in an inert argon atmosphere. The synthetic procedure is significant as the oxides could not be synthesized by the solid state methods. Chemical analysis coupled with energy dispersive spectral analysis confirmed the extent of replacement of Na+ ions by Cu+ ions. A complete exchange of alkali metal ion, Na+ by Cu1+ in the interlayers of these honeycomb oxides has been achieved using a ratio of 1:3 between Na4FeSbO6 and CuCl. An additional exchange of approximately 70 % Na+ ions from the honeycomb arrays is possible by varying the ratio to 1:4. Rietveld refinements (space group C2/c) of the powder X-ray diffraction data have been carried out to ascertain the phase purity and to verify the structure formed by edge shared honeycomb arrays separated by Cu1+ in dumbbell configuration (O–Cu1+-O). X-ray photoelectron spectroscopy analysis confirmed the oxidation states of the constituent ions, specifically copper as Cu1+. A similar method is adopted to synthesize Cu3(LiFeSb)O6 by reacting Na3(LiFeSb)O6 and CuCl in the ratio 1:3 at 400 °C. These new delafossite oxides, Cu3(MFeSb)O6 (M = Na, Li) and Cu3((Cu0.7Na0.3)FeSb)O6, exhibit interesting magnetic properties which are significantly different from the rock salt based parent sodium analogs. Dominant antiferromagnetic interactions with a specific ordering temperature have been observed for these samples containing Fe3+ (d5) ions in the honeycomb. UV–visible diffuse reflectance measurements indicated the decrease in the band gap of Cu1+ based oxides. This study highlights the importance of low temperature ion-exchange reactions as an effective route to stabilize multifunctional materials of potential importance for various applications.  相似文献   

11.
The kinetics of osmium (VIII) catalyzed oxidation of DL-methionine by hexacyanoferrate(III) (HCF) in aqueous alkaline medium at a constant ionic strength of 0.50 mol dm?3 was studied spectrophoto-metrically. The reaction between hexacyanoferrate(III) and DL-methionine in alkaline medium exhibits 2:1 stoichiometry (2HCF:DL-methionine). The reaction is of first order each in [HCF] and [Os(VIII)], less than unit order in [alkali] and zero order for [DL-methionine]. The decrease in dielectric constant of the medium increases the rate of the reaction. The added products have no effect on the rate of reaction. The main products were identified by spot test. A free radical mechanism has been proposed. In a prior equilibrium step Os(VIII) binds to OH? species to form a hydroxide species and reacts with [Fe(CN)6]3? in slow step to form an intermediate species(C1). This reacts with a molecule of DL-methionine in a fast step to give the sulfur radical cation of methionine and yields the sulfoxide product by reacting with another molecule of [Fe(CN)6]3?. The rate constant of the slow step of the mechanism is calculated. The activation parameters with respect to slow step of the mechanism are evaluated and discussed.  相似文献   

12.
《Ceramics International》2019,45(11):14354-14359
In all the waters where mollusks can grow, a variety of metal ions abounds. Attention has focused, however, on the effects of K+, Na+ and Mg2+ on the biomineralization of nacre, and those of other metal ions have been relatively neglected. This paper investigated the effects of representative copper (II) on the biomineralization of CaCO3 using egg white as the organic matrix. The effects of copper ion concentration, aging time and the combined actions of a high concentration of both egg white and Cu2+ on the morphology and crystal type of CaCO3 were studied, and the action mechanism was analyzed. The results show that copper (II) can induce the formation of vaterite, promote the spheroidization of mineralized particles, distort and deform the lamellar structure, and affect the surface roughness. Mechanism analysis shows that the bending and twisting of the protein molecule chain caused by the biuret reaction of Cu2+ with egg-white protein is the primary reason for the effects of copper (II) on the morphology and crystal type of CaCO3. On this basis, a micron pearl-like CaCO3 with a spherical structure consisting of uniform lamellae about 350 nm thick was obtained by exploiting the combined actions of high concentrations of egg white and Cu2+.  相似文献   

13.
N‐heterocyclic acrylamide monomers were prepared and then transferred to the corresponding polymers to be used as an efficient chelating agent. Polymers reacted with metal nitrate salts (Cu2+, Pb2+, Mg2+, Cd2+, Ni2+, Co2+, Fe2+) at 150°C to give metal‐polymer complexes. The selectivity of the metal ions using prepared polymers from an aqueous mixture containing different metal ion sreflected that the polymer having thiazolyl moiety more selective than that containing imidazolyl or pyridinyl moieties. Ion selectivity of poly[N‐(benzo[d]thiazol‐2‐yl)acrylamide] showed higher selectivity to many ions e.g. Fe3+, Pb2+, Cd2+, Ni2+, and Cu2+. While, that of poly[N‐(pyridin‐4‐yl)acrylamide] is found to be high selective to Fe3+ and Cu2+ only. Energy dispersive spectroscopy measurements, morphology of the polymers and their metallopolymer complexes, thermal analysis and antimicrobial activity were studied. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42712.  相似文献   

14.
Chengfen Xing  Minghui Yu 《Polymer》2008,49(11):2698-2703
A series of water-soluble cationic polyfluorene copolymer containing 2,2′-bipyridine moieties (PFP-P1-3) in the backbone were designed and synthesized as the fluorescent probes for Cu2+ ions. In the absence of the Cu2+ ion, the PFP-P2 exhibits strong fluorescence emission in aqueous solution. Upon adding the Cu2+ ion, the PFP-P2 coordinates to Cu2+ ions through weak N?Cu interactions, and its fluorescence is efficiently quenched by the Cu2+ ion with a Stern-Volmer constant (Ksv) of 1.44 × 107 M−1. The new method has high sensitivity with a detection limit of 20 nM. The minor interference from other heavy metal ions clearly shows that the PFP-P2 can be used as the Cu2+ ion probe with good selectivity.  相似文献   

15.
Reaction between 1,1,2,2-tetra(pyrazol-1-yl)ethane (Pz4) and copper(II) nitrate in ethanol at room temperature and in solvothermal conditions (90 °C) lead to coordination polymers of two different structures. A ribbon-like coordination polymer {Cu22-NO3)2(H2O)4 μ′2-Pz4}n was formed at room temperature in which nitrate ions bind the monomeric units, while Pz4 ligands are responsible for cross-linking of {Cu(μ-NO3)} chains. At 90 °C linear 1D coordination polymer was formed, in which Pz4 ligands bridge copper ions that in addition bear two monodentate nitrate ions.  相似文献   

16.
《分离科学与技术》2012,47(10):1335-1346
Abstract

Some selective transport systems for heavy metallic ions through a supported liquid membrane (SLM) containing a 2,2′-dipyridyl derivative ligand, 4,7-diphenyl-2,9-dimethyl-1,10-phenanthroline (bathocuproine), 2,9-dimethyl-1,10-phenanthro-line (neocuproine), or 4,7-diphenyl-1,10-phenanthroline (bathophenanthroline), were investigated. The transport of copper(I, II), cadmium(II), zinc(II), lead(II), and cobalt(II) ions was accomplished with a halogen ion such as chloride, bromide, or iodide ion as a pairing ion species for any SLM. The ranking of the permeability of the metallic ions was Cu+,2+, Zn2+, Cd2+ ? Pb2+, Co2+. When the oxidation-reduction potential gradient was used as a driving force for metallic ions, the transport of Cu+ ion was higher than those of Cd2+ and Zn2+ ions for any SLM containing bathocuproine, neocuproine, or bathophenanthroline. On the other hand, in the transport system which used the concentration gradient of pairing ion species, the permeability of the Cu2+ ion decreased whereas that of the Cd2+ ion increased. Moreover, it was found that the different selectivity for the transport of metallic ions is produced by using various pairing ion species.  相似文献   

17.
A poly(vinyl alcohol) membrane (PVA) was modified by radiation graft copolymerization of acrylic acid/styrene (AAc/Sty) comonomers. The Cu and Fe ion‐transport properties of these membranes were investigated using a diaphragm dialysis cell. In the feed solution containing CuCl2 or a mixture of CuCl2 and FeCl3, the PVA‐g‐P(AAc/Sty) membranes showed high degrees of permselectivity toward Cu2+ rather than toward Fe3+. The permeation of Cu2+ ions through the membranes was found to increase with decrease in the grafting yield. However, as the content of Cu2+ ions in the Cu/Fe binary mixture feed solutions decreased, the rate and the amount of transported Cu2+ through the grafted membrane decreased, with no appreciable permselectivity toward Fe3+. When Fe2+ ions were used instead of Fe3+ ions in the feed solution containing Cu2+, the transport of both Cu2+ and Fe2+ through the membrane was observed. The rate of transport of Fe2+ was higher than that of Cu2+. In addition, it was found that the selective transport of ions was significantly influenced by the pH difference between both sides of the membranes. As the pH of the feed or the received solution decreased, both Cu2+ and Fe3+ passed through the membrane and were transported to the received solution. The role of carboxylic acid and the hydroxyl groups of the grafted membranes in the transportation process of ions is discussed. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 125–132, 2000  相似文献   

18.
Solvothermal reaction of CuCl2·2H2O and 2-(4-pyridyl)benzimidazole (PyHBIm) in a acetonitrile-water mixed solvent afforded a mixture of [CuI2CuII(CN)2(PyHBIm)2Cl2]n (1) and [CuII(PyH2BIm)2Cl4] (2). Complex 1 is a mixed-valence 1D ribbon Cu(I,II)-cyanide coordination polymer. One Cu(II) center linearly links two Cu(I) ions via two μ2-CN bridges. XPS spectrum and bond valence sum (BVS) analysis have confirmed the mixed-valence characteristics. Cu(II) ion adopts a centrosymmetric square-planar geometry surrounded by two cyanides and two pyridyl groups. Cu(I) ions adopt a trigonal geometry coordinated by cyanide, imidazole group and Cl anion. The cyanide ligand is in situ generated from the cleavage of acetonitrile solvent, which indicates that acetonitrile is an environmentally friend cyanating agent. The mechanism of acetonitrile in situ cleavage under solvothermal condition is explained. Complex 2 is a centrosymmetric mononuclear Cu(II) compound. Four equivalent Cl anions lie on the equatorial plane. The protonated PyH2BIm+ cation as a monodentate ligand coordinates to Cu(II) center via pyridyl terminal.  相似文献   

19.
The interaction of polyacrylic acid (PAA), polysodium acrylate (PAANa), polyacrylamide (PAM) and acrylic acid–acrylamide copolymer P(AM-AA) with copper sulphate was studied to evaluate the thermal and radiation chemical stabilities of the resultant polymers which contained increasing quantities of Cu2 + . It was found that the efficiency of the polymers toward Cu2 + interaction, as determined by XRF, follows the order P(AM-AA) > PAM > PAANa. PAA was inactive, and no Cu2 + ions were detected. Generally, the results obtained from TGA and DSC reveal that there is an improvement in the thermal stability when Cu2 + is incorporated into the polymer matrix, but the amount of Cu2 + bound to the polymeric chains does not correlate with their relative thermal stability. The degree of crystallinity estimated by X-ray diffraction also increases as Cu2 + is incorporated into the polymer. In addition to the thermal stability, the radiation chemical stability of polymer with accumulated Cu2 + was found to be very high, so that the percentage of Cu2 + released from the crosslinked polymers was zero at radiation doses of up to 500 kGy. © 1999 Society of Chemical Industry  相似文献   

20.
Ni2+‐imprinted monolithic column was prepared for the removal of nickel ions from aqueous solutions. N‐Methacryloyl‐L ‐histidine was used as a complexing monomer for Ni2+ ions in the preparation of the Ni2+‐imprinted monolithic column. The Ni2+‐imprinted poly(hydroxyethyl methacrylate‐N‐methacryloyl‐L ‐histidine) (PHEMAH) monolithic column was synthesized by bulk polymerization. The template ion (Ni2+) was removed with a 4‐(2‐pyridylazo) resorcinol (PAR):NH3? NH4Cl solution. The water‐uptake ratio of the PHEMAH–Ni2+ monolith increased compared with PHEMAH because of the formation of nickel‐ion cavities in the polymer structure. The adsorption of Ni2+ ions on both the PHEMAH–Ni2+ and PHEMAH monoliths were studied. The maximum adsorption capacity was 0.211 mg/g for the PHEMAH–Ni2+ monolith. Fe3+, Cu2+, and Zn2+ ions were used as competitive species in the selectivity experiments. The PHEMAH–Ni2+ monolithic column was 268.8, 25.5, and 10.4 times more selective than the PHEMAH monolithic column for the Zn2+, Cu2+, and Fe3+ ions, respectively. The PHEMAH–Ni2+ monolithic column could be used repeatedly without a decrease in the Ni2+ adsorption capacity. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号