首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
现场载荷试验是确定单桩竖向承载力常用方法之一,基于现场试桩静载试验和桩身轴力测试试验,分析了后注浆超长灌注桩的竖向极限承载力性状、桩身轴力传递特性及桩侧阻力,桩端阻力发挥特性。研究结果表明:在竖向荷载作用下,桩身轴力随着深度的增加而增量减小,且随荷载的增加而逐渐增大;超长灌注桩表现出摩擦桩特性,荷载-沉降曲线没有明显破坏点,其竖向荷载主要靠侧摩阻力进行传递;桩侧阻力和桩端阻力非同步发挥并且相互影响。根据实测数据对计算单桩承载力的侧摩阻力和桩端阻力的系数进行修正,修正后为类似桩基础工程设计提供技术参考。  相似文献   

2.
素混凝土桩复合地基荷载传递机理的试验研究   总被引:25,自引:2,他引:23  
为研究带有垫层的素混凝土桩复合地基中桩身轴力、桩侧摩阻力的分布及发展过程 ,设计了一组足比例尺单桩复合地基试验 ,在桩身内埋设钢弦式应力计测出了桩身轴力 ,并由此得出桩侧摩阻力。从实测结果与散体桩、无垫层带台单桩的桩身轴力、侧摩阻力分布对比分析可以看出 ,三者传力机理是不同的。与散体桩相比 ,素混凝土桩复合地基中荷载沿桩身全长传递。与无垫层带台单桩相比 ,桩侧摩阻力从加荷开始在桩周上部土层即出现负摩阻 ,使得桩身轴力最大点不在桩顶而在中性点处。带有垫层的素混凝土桩复合地基中桩侧负摩阻力的大小随荷载加大而变小 ,同时中性点位置逐渐上移 ,相当一部分上部土层的摩阻力随着荷载的加大由负摩阻力逐渐变为正摩阻力。该负摩阻力使桩从加荷开始就承担较大荷载 ,并使桩下部的摩阻力也能得到充分发挥 ,进而使桩在全过程都发挥了作用。同时 ,桩周土体的承载力也得到增强  相似文献   

3.
对某跨海桥梁近海软土地基的2根大直径PHC桩进行静载试验,并通过预埋的应变式钢筋计测试桩身轴力分布,结果表明桩侧土层刚度越大,桩顶荷载传递给该土层承担的比例也越大,桩身轴力减小也越显著,反之则桩顶荷载更多向下部土层传递;桩身上部土层侧阻力先于下部土层发挥作用,且较大的荷载将使上部桩土发生较大相对位移,从而导致淤泥层侧摩阻力发生软化现象;尽管大直径PHC桩桩身刚度较大,但在设计工作荷载下桩顶实测沉降仍主要由桩身压缩引起。  相似文献   

4.
 目前,国内外缺乏通过现场试验对薄壁筒桩荷载传递特性方面的研究,关于筒桩加固滩涂土地基的研究也较少。以温州浅滩一期半岛起步区首期1#地块为工程背景,进行现场荷载试验,以现场实测数据分析筒桩荷载传递特性。研究结果表明:在最大荷载作用下,较长的筒桩表现为端承摩擦型桩,桩侧摩阻力比约为75%,较短的筒桩表现为纯摩擦型桩,通过增加桩长、桩径可以提高筒桩竖向承载力;该类地区适合建5层以内工业厂房;桩身轴力自上向下逐渐发挥,桩身上部与下部土层摩阻力异步发挥;当上部土层达到极限侧摩阻力时,随着荷载的增加,出现侧阻软化现象,内侧摩阻力沿桩身自下向上逐渐发挥,为外侧摩阻力的20%~25%。采用簿壁筒桩加固滩涂土地基时,应考虑土芯内侧摩阻力对承载力的贡献。  相似文献   

5.
静钻根植桩是一种绿色环保的新型桩基,具有低噪声、无挤土、少排泥等优势,可应用于高层建筑、桥梁等工程中。基于现场抗压和抗拔静载试验及桩身内力测试,分析了上海地区静钻根植桩的竖向承载变形特性以及桩身轴力和侧摩阻力分布。研究结果表明:静钻根植桩在上海典型地层条件下具有较好的适用性,抗压试桩和抗拔试桩的承载力均大于规范估算值,采用目前的承载力计算方法有一定的安全储备;抗压试桩在加载初期,桩身轴力可以直接传递到桩端,在极限荷载下桩端(扩大头)承载力约占总荷载的25%;静钻根植桩极限侧摩阻力主要与土的特性和埋深有关,上部土层(埋深30m以上)接近规范建议的预制桩侧摩阻力上限值,下部土层(埋深30m以下)较规范建议的预制桩侧阻上限高约14%~28%。  相似文献   

6.
 通过广东软土地区大直径超长钻孔灌注桩大吨位静载试验,分析了该地区大直径超长钻孔灌注桩承载特性及荷载传递机制,为该地区大直径超长桩的理论研究和工程应用提供了宝贵的参考数据。实测结果研究表明:试桩的Q-s曲线呈缓变型,桩端承载力分担总荷载比例均低于15%,表现为摩擦桩特性;随桩顶荷载增加,桩土相对位移沿桩身的递增幅度呈先增大后减小的趋势,淤泥质粉质黏土和淤泥达到极限侧摩阻力所需的桩土相对位移分别为17和6 mm,砂土达到极限侧摩阻力所需桩土相对位移22~27 mm,桩身上部土层侧摩阻力发生不同程度的软化;桩身上部粉质黏土的桩土相对位移为18~23 mm,在桩土相对位移达40 mm时,下部粉质黏土层侧摩阻力达到极限值的87%以上,桩土相对位移继续增大时,侧阻增加趋势较为平缓,并逐渐接近于极限值;风化砂岩侧摩阻力随桩土相对位移的增加而增大,极限荷载下侧摩阻力未完全发挥;桩端阻力随着桩端沉降量的增加呈加工硬化型。  相似文献   

7.
桩基静载荷试验是研究桩基承载力性能和工艺参数最为可靠的试验方法。基于4根直径1.2m桩端桩侧联合后注浆嵌岩钻孔灌注桩单桩静载荷试验,得到了试验桩的荷载位移曲线、桩身轴力分布特性、桩侧摩阻力分布特性和桩身承载力特性。试验表明:该4根试桩极限承载力均不小于50 000 kN,桩顶位移变形量均小于45 mm,位移控制能力表现较好;通过桩身轴力和桩身断面位移变形参数分析可知,桩顶位移变形主要来于非嵌岩段的桩身压缩变形,占总变形量的88%~92%;桩身轴力及侧摩阻力曲线表明嵌岩段的侧阻力并未充分发挥,端阻力占总承载力的比例相对较小,为6%~7%左右;桩基承载力主要由侧摩阻力承担,表现为摩擦桩。  相似文献   

8.
软土地区大吨位超长试桩试验设计与分析   总被引:1,自引:0,他引:1  
温州350 m超高层中超长桩加载2800 t的试桩静载试验设计与分析表明:在地表土质承载力较低场地进行大吨位堆载试验时,可选择桩梁式堆载支墩–反力架装置来完成试验。对超长桩来说,在最大加载条件下,实测桩端阻力仅为桩顶荷载的25%左右,超长桩表现为端承摩擦桩性状。在使用荷载下,桩顶沉降的90%以上来自桩身压缩,在进行超长桩设计时,要充分考虑桩身质量对试桩沉降的影响。同时,桩底沉渣清除的干净与否,也直接影响超长桩的沉降。超长桩桩侧上部土层摩阻力具有不同程度的软化现象,而中下部土层侧摩阻力具有较弱的强化效应,因此在超长桩承载力计算时,不同深度土层的桩侧阻力和桩端阻力都应乘以相应不同的修正系数。试验结果显示淤泥土、淤泥质黏土、淤泥夹粉砂土中极限侧阻充分发挥所需的桩土相对位移阀值分别约为5~7 mm、6~8 mm和8~10 mm。  相似文献   

9.
 单桩静载试验和基础沉降实测资料表明:在设计工作荷载下超长单桩的桩顶沉降主要来自桩身压缩,且在最大加载条件下超长桩表现为端承摩擦桩性状。超长单桩侧摩阻力由上部土层到下部土层依次发挥,砂质粉土侧摩阻力充分发挥所需的桩土极限相对位移为14~18 mm,粉质黏土侧摩阻力充分发挥所需的桩土极限位移为17~19 mm,当桩土相对位移大于该极限位移后,桩侧土层会出现侧摩阻力软化现象。群桩基础的沉降随施工荷载水平的增加而增大。荷载较小(第5层以下)时,大楼沉降较小且沉降均匀;当荷载达到一定值(第30层以上)时,核心筒处沉降大于大楼周边沉降。大楼竣工时核心筒与周边沉降差较小,大楼整体变形协调。群桩效应沉降比随着荷载水平(施工层数)的增大先增大后减小。  相似文献   

10.
宋广 《工程勘察》2014,(7):1-5,86
山东省东明黄河公路大桥单桩竖向静载试验采用拉压锚法加载装置实现了45000kN超大吨位加载,为研究黄河中下游地区大直径超长灌注桩承载特性及荷载传递机理提供了有价值的参考数据。试验结果表明:两根试桩桩顶Q-s曲线均呈缓变型,表现出摩擦桩性状;桩顶在低竖向荷载作用下,桩身弹性压缩量占超长桩桩顶沉降量的绝大部分,该比重随桩顶竖向荷载的增加而减小;试桩加载至45000kN时,桩身弹性压缩量占桩顶沉降量的比例仍超过50%;由于桩侧土层侧摩阻力发挥的异步性,超长桩上部土层的侧摩阻力先于下部土层发挥;侧摩阻力发挥过程中,超长桩中部土层侧摩阻力软化效应严重,而深部土层侧摩阻力具有明显的增强效应,超长桩设计计算时应考虑不同深度土层侧摩阻力的软化效应或增强效应。  相似文献   

11.
通过室内模型试验,研究了粉砂地层中超长桩的荷载-沉降(Q-s)关系、桩身轴力、桩侧摩阻力、桩身压缩、桩端阻力、桩土相对位移等承载性状及荷载传递规律。结果表明,超长桩的Q-s曲线为缓降型,与端承摩擦桩的Q-s曲线相似。随桩顶荷载的增加,桩侧摩阻力沿桩身分布逐步由一个峰值转变为两个峰值,桩身压缩主要发生在桩身上部,桩侧摩阻力随桩土相对位移增加基本符合双曲线发挥规律。桩端阻力随桩顶荷载增加变化可分为缓慢增长段、加速增长段和减缓破坏段,荷载较小时,桩端阻力与桩端位移基本呈线性关系,随荷载增大,桩端位移加速增长,极限荷载后,桩端出现刺入变形。  相似文献   

12.
后注浆抗压桩受力性状的试验研究   总被引:9,自引:5,他引:4  
 在温州鹿城广场5根抗压桩静载试验的基础上,揭示后注浆抗压桩在不同荷载水平下的一些规律。试验表明,注浆压力时刻都在变化,但有一个大体动态变化的范围。注浆可以固化桩底沉渣和桩侧泥皮,改善桩的承载性能。抗压桩在荷载作用下,桩身轴力随着深度的增加而减少,且随着荷载的增加,桩端轴力逐渐增大。对持力层是卵石层的桩采用桩端后注浆技术后,桩身压缩量占单桩沉降的80%以上。桩侧摩阻力的发挥程度和桩土相对位移有着很好的对应关系。当桩土相对位移达到一定值后,桩上部土层会出现桩侧摩阻力随着桩顶荷载的增加而减少的现象,即侧摩阻力软化现象。而靠近桩端的桩侧土体,尽管桩土相对位移较小,桩侧摩阻力值却会急剧增大。  相似文献   

13.
桩身应力应变测试是从微观上了解桩基工作性状的基本方法,为了得到桩侧各土层的分层抗压摩阻力和桩端支承力,了解桩身荷载传递机理,需要在试桩桩身的不同部位埋设应力计。在做竖向静载荷试验时,随着在桩顶施加荷载,测量桩身不同部位应力计的应变,从而计算桩身侧各土层抗压摩阻力和桩端支承力。通过试桩的Q-S曲线、桩身轴力曲线,从微观上了解桩基工作性状,给出一些结论 ,为设计提供依据,从而有利于更好的控制工程造价。  相似文献   

14.
根据上海地区某工程超长灌注桩的现场静载荷试验和桩身应力测试结果,分析该地区超长灌注桩的竖向承载特性。实测结果表明,两根试桩的桩端阻力与桩顶荷载之比约为10%,超长桩的竖向承载力主要由桩侧摩阻力来提供的。通过对桩身轴力和侧阻分布曲线的分析,发现超长灌注桩侧摩阻力的发挥与桩顶荷载、桩周土性质等因素密切相关,而成孔质量在满足规范要求后对土体侧摩阻力发挥影响并不显著。根据桩身侧阻分布特点,建议在工程设计时应充分利用深层的密实粉砂层来提高桩身竖向承载力,研究结论可供同类地区的超长桩设计和理论分析提供参考。  相似文献   

15.
杭州深厚软土层钻孔灌注桩单桩承载特性研究   总被引:1,自引:0,他引:1  
杭州市某高架桥选用后压浆钻孔灌注桩,为了掌握钻孔灌注桩在该软土层的承载特性,共设计了一组三根试桩进行单桩竖向抗压试验和桩身高应变试验,试桩中安装了振弦式钢筋应力计、滑动测微仪和土压力盒以反映桩侧摩阻力、桩端阻力及竖向承载力.通过对试验数据进行计算及对比分析,结果表明:杭州软土层钻孔灌注桩表现为典型摩擦桩受力性状;单桩摩阻力由上部土层到下部土层依次发挥,浅部土层在达到极限摩阻力后,随着加载的增大,由于桩周土体发生了滑移破坏,桩侧摩阻力会有所降低;桩身高应变动测试验结果与静载试验结果接近,但桩侧、桩端分担比例与静载试验结果稍有差别.  相似文献   

16.
对原为沟壑的场地,经回填全风化泥质粉砂岩形成高填方地基。对高填方地基采用3000kN·m能级强夯预处理后,打设钻孔灌注桩,通过在桩身钢筋笼主筋上安装应力计,在桩身截面和桩周土层分别埋设沉降杆、分层沉降仪,测试桩身轴力、桩身及桩周土层沉降变化情况,得到高填方夯实地基未处理填土层桩侧负摩阻力变化规律。试验结果表明,未处理填土层桩侧摩阻力沿深度呈现“负-正”变化的现象,随着固结时间的增加,端承桩负摩阻力区段大于摩擦桩。端承桩桩侧土层提供的最大负摩阻力约是摩擦桩的1.18~2.56倍,桩周土层密实度对桩侧最大负摩阻力有影响。采用一阶负指数函数拟合得到桩身下拉荷载预测模型,随着固结时间的增加,作用于桩身的下拉荷载趋于定值,作用于端承桩的下拉荷载比摩擦桩高41.2%~55.4%,从控制负摩阻力角度推导出高填方夯实地基摩擦桩桩长设计计算方法。桩身中性点位置均随固结时间增加而逐渐下移,端承桩中性点深度较摩擦桩平均大0.7m。  相似文献   

17.
以青岛市某大型工程为依托,对在泥质粉砂岩地基中的5根人工挖孔嵌岩灌注桩分别进行竖向静载荷试验与桩身内力测试。根据大直径嵌岩桩实测数据探讨大直径人工挖孔嵌岩灌注桩的荷载传递机理与竖向承载特性。试验结果表明:试桩荷载沉降(Q-s)曲线为缓变形,桩顶沉降量均小于11mm,卸载回弹率大,幅度为51%~75%,承载力较高,5根试桩均满足设计要求;在最大荷载下,5根嵌岩桩桩端阻力所占桩顶荷载比值均在10%~20%之间,随桩长、嵌岩深度(中风化)增大而减小,表现出端承摩擦桩的特性;桩身荷载自上而下逐步发挥,上覆土层先达到侧摩阻力极限值,在嵌岩段中部侧摩阻力达到峰值;桩入岩越深,安全储备量越大,在泥质粉砂岩中风化段,实测侧摩阻力约为规范推荐值的2.5倍,说明5根桩有较大的承载潜力;随着荷载的增大,嵌岩段分担的总阻力由39%上升至45%,嵌岩段侧摩阻力占主要比重,但桩端阻力分担荷载的比例上升速率较快;根据行业标准与静载试验数据,重新认识该地层人工挖孔嵌岩灌注桩的竖向承载特性,充分发挥其承载潜力,对工程桩桩身尺寸进行优化,达到节约材料和提高施工功效的目的,具有较好的经济效益。  相似文献   

18.
钟杰  李粮纲  金宗川  胡龙飞  漆帅 《建筑结构》2020,50(11):108-113,84
依托天津某主塔楼桩基工程,通过双循环静载试验及试验数据的分析,研究了滨海软土中超长后注浆桩的承载性能。结果表明,超长后注浆桩的荷载-沉降曲线呈缓变型;回弹时桩侧摩阻力反向,使得在第二次循环开始时,部分桩段的桩身轴力大于桩顶荷载;桩身弹性压缩是桩顶产生沉降的主要原因;桩的承载力主要靠桩侧摩阻力承担,有效桩长段上部的侧摩阻力充分发挥。试验桩的端阻比还不足3%,更多表现出摩擦桩的特性。此外,对现有的几种单桩承载力计算方法及结果进行了对比分析,并对单桩承载力计算方法适用性进行了讨论,提出了在滨海软土单桩极限承载力计算时的桩侧摩阻力增强系数优化值,可为今后类似工程的设计施工提供参考。  相似文献   

19.
桩土界面剪切行为对静压敞口预应力高强混凝土(PHC)管桩沉贯性状及长期承载力特性具有至关重要的作用。通过成层土地基中桩身预埋光纤光栅(FBG)传感器的静压桩足尺试验,分别对敞口PHC管桩贯入及静载荷试验中的桩土界面剪切行为进行研究。结果表明:在贯入阶段,桩身轴力及侧摩阻力沿桩的深度方向逐渐传递,传力幅值与桩周土体性状密切相关,土层界面处轴力传递效率依次为98.2%、92.2%、96.3%、83.8%、80.5%。随着压桩循环次数的增加,同一深度土层摩阻力呈逐渐减小趋势。经历5个压桩循环后,深度6 m处的砂质粉土层摩阻力减小幅度约为46.25%,深度10m处的粉质黏土层经历3个压桩循环后摩阻力减小幅度约为12.1%;载荷试验过程中,桩侧摩阻力随着桩顶荷载施加自上而下逐步发挥。摩阻力完全发挥所需的桩土相对位移,粉质黏土层的最大,约为6.96~7.46mm,淤泥质黏土层的次之,约为6.05mm,砂质粉土层的最小,约为4.23mm;与原状土相比,重塑区土体含水量、孔隙比参数指标降低,重度、黏聚力及内摩擦角增大。桩周重塑区土体物理力学指标变化是贯入及载荷试验阶段桩土界面剪切行为不同的重要原因。  相似文献   

20.
《工业建筑》2021,51(3):147-152
基于FLAC3D有限差分软件,对普通抗拔桩和托底抗拔桩进行数值模拟分析,对比研究两种抗拔桩的荷载-位移曲线、桩身轴力传递特性及桩侧摩阻力分布等特性。结果表明:普通抗拔桩的极限承载力小于托底抗拔桩的极限承载力,荷载相同时普通抗拔桩的位移更大;两种桩型的荷载-位移曲线均主要由线性段构成,普通抗拔桩和托底抗拔桩在极限状态时均发生"突变型破坏";托底抗拔桩桩身轴力由下向上传递,普通抗拔桩桩身轴力由上向下传递,两者的轴力沿深度分布形式相反:普通抗拔桩轴力随深度增加而减小,托底抗拔桩随深度增加而增大;两种桩的摩阻力分布曲线相似,上部小,中下部大;荷载水平较低时,托底抗拔桩上部摩阻力大于普通抗拔桩,荷载水平较高时,除了桩端附近,托底抗拔桩全桩摩阻力均大于普通抗拔桩;桩侧摩阻力与桩土相对位移关系呈双曲线型分布。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号