首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RISCALW is a novel convenient Windows program for risk calculation in families with Duchenne muscular dystrophy. It is based on an extended genetic model which includes germline mosaicism and different new mutation rates depending on sex and mutation type. Arbitrary family structures and additional diagnostic information such as genotypes from intragenic and flanking genetic markers of the dystrophin gene, creatin kinase values, and female deletion test results can be taken into account. Comprehensive online help is available. RISCALW has been extensively tested in more than 100 families. The user is able to perform risk calculations in large families in an easy way, and thus explore the dependence of the results on different model assumptions, for example different mutation rates in males and females. A detailed handbook and example files are distributed with the program. RISCALW is freely available for scientific use at http://www.riscalw.uni‐hd.de .  相似文献   

2.
In 288 Dutch and Belgian Duchenne and Becker muscular dystrophy families, the parental origin of 41 new deletion or duplication mutations was determined. Twenty seven of the new mutations occurred in the maternal X chromosome and nine in the grandmaternal and five in the grandpaternal X chromosome. The grandparental data are compatible with equal mutation rates for DMD in male and female X chromosomes. New mutations were defined by their presence in one or more progeny and absence in the lymphocytes of the mother or the grandparents. In one family a fraction of the maternal lymphocytes was found to carry the mutation, suggesting somatic mosaicism. In six cases out of 41, the mutation was transmitted more than once by a parent in whom the mutation was absent in lymphocytes, suggesting gonadal mosaicism as the explanation for the multiple transmission. Using our data for the recurrence of the mutations among the total of at risk haplotypes transmitted, we arrive at a recurrence risk of 14% for the at risk haplotype. The observation of this high risk of germinal mosaicism is crucially important for all physicians counselling females in DMD families. Recently, germinal mosaicism has been observed also in a number of other X linked and autosomal disorders. The implications and appropriate diagnostic precautions are discussed.  相似文献   

3.
Deletions of chromosome 1p36 are one of the most frequently encountered subtelomeric alterations. Clinical features of monosomy 1p36 include neurocognitive impairment, hearing loss, seizures, cardiac defects, and characteristic facial features. The majority of cases have occurred sporadically, implying that genomic instability plays a role in the prevalence of the syndrome. Here, we report two siblings with mild phenotypic features of the deletion syndrome, including developmental delay, hearing loss, and left ventricular non-compaction (LVNC). Microarray analysis using bacterial artificial chromosome and oligonucleotide microarrays indicated the deletions were identical, suggesting germline mosaicism. Parental phenotypes were normal, and analysis by fluorescence in situ hybridization (FISH) did not show mosaicism. These small interstitial deletions were not detectable by conventional subtelomeric FISH analysis. To investigate the mechanism of deletion further, the breakpoints were cloned and sequenced, demonstrating the presence of a complex rearrangement. Sequence analysis of genes in the deletion interval did not reveal any mutations on the intact homologue that may have contributed to the LVNC seen in both children. This is the first report of apparent germline mosaicism for this disorder. Thus, our findings have important implications for diagnostic approaches and for recurrence risk counseling in families with a child with monosomy 1p36. In addition, our results further refine the minimal critical region for LVNC and hearing loss.  相似文献   

4.
The presence of multiple affected offspring from apparently non-carrier parents is caused by germ line mosaicism. Although germ line mosaicism has been reported for many diseases, figures for recurrence risks are known for only a few of them. In X-linked Duchenne and Becker muscular dystrophies (DMD/BMD), the recurrence risk for non-carrier females due to germ line mosaicism has been estimated to be between 14% and 20% (95% confidence interval 3–30) if the risk haplotype is transmitted. In this study, we have analyzed 318 DMD/BMD cases in which the detected mutation was de novo with the aim of obtaining a better estimate of the 'true' number of germ line mosaics and a more precise recurrence risk. This knowledge is essential for genetic counseling. Our data indicate a recurrence risk of 8.6% (4.8–12.2) if the risk haplotype is transmitted, but there is a remarkable difference between proximal (15.6%) (4.1–27.0) and distal (6.4%) (2.1–10.6) deletions. Overall, most mutations originated in the female. Deletions occur more often on the X chromosome of the maternal grandmother, whereas point mutations occur on the X chromosome of the maternal grandfather. In unhaplotyped de novo DMD/BMD families, the risk of recurrence of the mutation is 4.3%.  相似文献   

5.
A set of neurofibromatosis type 1 (NF1) patients was screened for large NF1 gene deletions by comparing patient and parent genotypes at 10 intragenic polymorphic loci. Of 67 patient/parent sets (47 new mutation patients and 20 familial cases), five (7.5%) showed loss of heterozygosity (LOH), indicative of NF1 gene deletion. These five patients did not have severe NF1 manifestations, mental retardation, or dysmorphic features, in contrast to previous reports of large NF1 deletions. All five deletions were de novo and occurred on the maternal chromosome. However, two patients showed partial LOH, consistent with somatic mosaicism for the deletion, suggesting that mosaicism may be more frequent in NF1 than previously recognised (and may have bearing on clinical severity). We suggest that large NF1 deletions (1) are not always associated with unusual clinical features, (2) tend to occur more frequently on maternal alleles, and (3) are an important mechanism for constitutional and somatic mutations in NF1 patients.  相似文献   

6.
Mosaicism is an important feature of type-1 neurofibromatosis (NF1) on account of its impact upon both clinical manifestations and transmission risk. Using FISH and MLPA to screen 3500 NF1 patients, we identified 146 individuals harboring gross NF1 deletions, 14 of whom (9.6%) displayed somatic mosaicism. The high rate of mosaicism in patients with NF1 deletions supports the postulated idea of a direct relationship between the high new mutation rate in this cancer predisposition syndrome and the frequency of mosaicism. Seven of the 14 mosaic NF1 deletions were type-2, whereas four were putatively type-1, and three were atypical. Two of the four probable type-1 deletions were confirmed as such by breakpoint-spanning PCR or SNP analysis. Both deletions were associated with a generalized manifestation of NF1. Independently, we identified a third patient with a mosaic type-1 NF1 deletion who exhibited segmental NF1. Together, these three cases constitute the first proven mosaic type-1 deletions so far reported. In two of these three mosaic type-1 deletions, the breakpoints were located within PRS1 and PRS2, previously identified as hotspots for nonallelic homologous recombination (NAHR) during meiosis. Hence, NAHR within PRS1 and PRS2 is not confined to meiosis but may also occur during postzygotic mitotic cell cycles.  相似文献   

7.
Familial adenomatous polyposis (FAP) is a familial form of colon cancer caused by mutation of the adenomatous polyposis coli (APC) gene. Although the APC gene has been extensively studied in the Caucasian population, it has not been previously described in the Chinese population. In the present study, we investigated APC mutation and phenotypic spectrum in the Singapore FAP families who are predominantly Chinese. The protein truncation test (PTT) was used to screen the entire APC gene for germline mutations in 28 unrelated families. Fifteen different mutations were identified in 22 families. Eight mutations were 1-11 basepair deletions or insertions; three involved deletions of whole exons and four were nonsense mutations. Nine of the mutations, including two complex rearrangements, are novel. Eight families including three de novo cases have the same (AAAGA) deletion at codon 1309, indicating that like the Western families, codon 1309 is also the mutation 'hot spot' for Singapore FAP families. In contrast, we did not find any mutation in codon 1061, the second hot spot for the Western population. Congenital hypertrophy of the retinal pigment epithelium (CHRPE) is consistently associated with the prescribed domain (codons 463 to 1387) and is the only phenotype with no intra-family variation. Other than CHRPE, differences in the type and frequency of extracolonic manifestations within the FAP families suggest the influence of modifying genes and environmental factors.  相似文献   

8.
Infantile spinal muscular atrophy (SMA) is a common autosomal recessive disease with a high demand for carrier testing. The disease is caused by homozygous deletions of the survival motor neuron (SMN)1 gene on chromosome 5q13 in more than 90% of cases. Meanwhile, several reliable quantitative methods for carrier detection in the general population have been implemented with a risk of at least 5% for false negative results. Linkage analyses with chromosome 5 markers can be used for complementary information, but they are restricted to risk estimation of close relatives in affected families. Here, we present the first observation of a somatic mosaicism in an SMA carrier. Molecular genetic studies gave evidence that the SMN1 deletion of an SMA type I patient most probably arose from somatic mosaicism in the paternal grandmother. The patient's father and his two brothers were shown to be carriers of three different maternal haplotypes in 5q13. Final conclusions for genetic counselling were only possible after both linkage analysis and quantitative real-time PCR analysis of SMN1 copy numbers.  相似文献   

9.
Fifty-three pedigrees with the fragile X syndrome have been studied for amplification of the CGG repeat sequence adjacent to the CpG island in the FMR1 gene. Probe StB12.3 allowed direct detection of affected males, carrier females, normal transmitting males, as well as prenatal diagnosis. Comparison of our molecular data with our previous linkage data from 38 families indicates the effectiveness of direct DNA analysis. A total of 325 individuals were studied and no new mutation was found. All daughters of males with a premutation had a premutation. When the mother had a full mutation no children had a premutation. In premutated mothers, the size of the premutation seems to be a determining factor for the transition to the full mutation. All affected males had a full mutation or mosaicism and only 42% of the females with a full mutation were mentally impaired. Analysis of large families over 3 generations illustrated clearly the Sherman paradox. Furthermore, the analysis of these families is in reasonable agreement with the multiallelic model of Morton and Macpherson [Proc Natl Acad Sci USA 89:4215–4217, 1992]. Mosaic cases in the offspring of the mothers with a full mutation suggest a maternal germinal mosaicism. Then an abnormal methylation and a somatic heterogeneity established in very early steps of embryogenesis could explain these Cases. © 1994 Wiley-Liss, Inc.  相似文献   

10.
The oculocerebrorenal syndrome of Lowe (OCRL) is a rare X-linked recessively inherited disease characterized by a severe pleiotropic phenotype including mental retardation, bilateral congenital cataract, and renal Fanconi syndrome. The gene responsible for OCRL encodes an inositol polyphosphate-5-phosphatase. We performed mutation analysis in 36 families and characterized 27 new mutations with two of them being recurrent mutations. The panel of mutations consisted of 27 truncating mutations (frameshift, nonsense, splice site mutations, and large genomic deletions), one in-frame deletion, and six missense mutations. The four large genomic deletions occurred in the first half of the gene, whereas all the remaining mutations took place in the second part of the gene and were concentrated in a few exons. This distribution may be of interest in terms of screening strategy when looking for unknown mutations. Haplotyping of the families was performed to analyze segregation of the mutated loci, and revealed a somatic mosaicism in one family. This is the second case of mosaicism we characterized in a total panel of 44 unrelated families affected by Lowe's syndrome. Considering the low number of families investigated, it appeared that somatic and germinal mosaicisms are quite common in this disease and must be taken into account for genetic counseling.  相似文献   

11.
Two cDNA probes, cf23a and cf56a, identify deletions of selected exons in about 50% of our DMD/BMD patients. We have estimated the most likely order of the 11 exons detectable with both probes with respect to the different extensions of the deletions. In one of our BMD pedigrees, the observed deletion could be traced in the affected males through three generations. This result shows that with the use of cDNA probes detecting deletions, the only risk of error in genomic prenatal diagnosis is the general high frequency of new mutations for DMD/BMD. This is important progress in diagnosis compared to the 2 to 5% risk of misdiagnosis because of crossing over events using conventional linkage analysis with bridging or intragenic probes. The first prenatal diagnosis of an unaffected fetus of a woman who is a DMD carrier according to ultrasound examination is described. In one of our DMD males, the cDNA probe cf56a detects a deletion breakpoint. His sister also shows the altered band and is therefore a DMD carrier, while his mother has a totally normal band pattern. The interpretation of this observation could be either germline mosaicism or two identical new mutations. The identification of deletion breakpoints is a new diagnostic strategy, especially for carrier determination, which excludes misdiagnosis owing to crossing over events and the problems of dosage estimation. It is, however, limited by the low frequency of breakpoints detectable with cDNA probes. Therefore, the generation of new intron probes in this region is an important goal.  相似文献   

12.
Uveal melanoma (UM) is the most commonly diagnosed primary intraocular tumor in adults. Familial UM (FUM), defined as two or more family members diagnosed with UM, is rare and estimated at less than 1% of all UM. Currently, BAP1 is the only gene known to contribute significant risk for UM. In this study we aimed to estimate the frequency of BAP1 mutation in FUM and to characterize the family and personal histories of other cancers in these families. We identified 32 families with FUM, including seven families previously reported by our group. BAP1 mutation testing was carried out by direct sequencing of the coding exons and the adjacent untranslated regions of the gene. Germline deletion and duplication analysis of BAP1 was assessed by multiplex ligation‐dependent probe amplification (MLPA). Germline BAP1 mutations were found in 6/32 (19%) families. No deletions or duplications were identified in any of the 24 samples tested by MLPA. Combined with published studies, the frequency of BAP1 mutations was 14/64 (22%) in FUM. FUM families without BAP1 mutations have distinct family histories with high rates of prostate cancer in first‐ and second‐degree relatives. It is likely that additional genes conferring risk for FUM exist. It is important to understand key shared features of FUM to focus future research on identifying these additional tumor predisposition syndromes. Though BAP1 should be tested first in these families, FUM families without BAP1 mutation should be explored for additional predisposition genes. © 2016 Wiley Periodicals, Inc.  相似文献   

13.
Hereditary leiomyomatosis and renal cell carcinoma (HLRCC) is a familial cancer syndrome associated with the development of cutaneous and uterine leiomyomas, and an aggressive form of type 2 papillary kidney cancer. HLRCC is characterized by germline mutation of the FH gene. This study evaluated the prevalence and clinical phenotype of FH deletions in HLRCC patients. Patients with phenotypic manifestations consistent with HLRCC who lacked detectable germline FH intragenic mutations were investigated for FH deletion. A series of 28 patients from 13 families were evaluated using a combination of a comparative genomic hybridization (CGH) array and/or CLIA‐approved FH deletion/duplication analyses. Thirteen distinct germline deletions were identified in the 13 UOB families, including 11 complete FH gene deletions and 2 partial FH gene deletions. The size of eight evaluated complete FH deletions varied from ~4.74 Mb to 249 kb, with all deletions resulting in additional gene losses. Two partial FH gene deletions were identified, with one resulting in loss of exon 1 and the upstream region of the FH gene only. Kidney cancer was diagnosed in 9 (32%) of 28 patients and 7 (54%) of 13 families possessing either complete or partial FH deletions. Cutaneous and uterine leiomyomas were observed at similar rates to those in FH point mutation families. Complete or partial FH gene alterations in HLRCC families are associated with all of the canonical HLRCC manifestations, including type 2 papillary kidney cancer and should be screened for in any patient at‐risk for this disorder.  相似文献   

14.
Although 22q terminal deletions are well documented, very few patients with mosaicism have been reported. We describe two new cases with mosaic 22q13.2-qter deletion, detected by karyotype analysis, showing the neurological phenotype of 22q13.3 deletion syndrome. Case 1 represents an exceptional case of mosaicism for maternal 22q13.2-qter deletion (45% of cells) and 22q13.2-qter paternal segmental isodisomy (55% of cells). This complex situation was suspected because cytogenetic, FISH and array-CGH analyses showed the presence of an 8.8 Mb mosaic 22q13.2-qter deletion, whereas microsatellite marker analysis was consistent with maternal deletion without any evidence of mosaic deletion. Molecular analysis led to the definition of very close, but not coincident, deletion and uniparental disomy (UPD) break points. Furthermore, we demonstrated that the segmental UPD arose by gene conversion in the same region. In Case 2, mosaicism for a paternal 8.9 Mb 22q13.2-qter deletion (73% of cells) was detected. In both patients, the level of mosaicism was also verified in saliva samples. We propose possible causative mechanisms for both rearrangements. Although the size of the deletions was quite similar, the phenotype was more severe in Case 2 than in Case 1. As maternal UPD 22 has not been generally associated with any defects and as the size of the deletion is very similar in the two cases, phenotype severity is likely to depend entirely on the degree of mosaicism in each individual.  相似文献   

15.
We have analysed haplotypes for four DNA polymorphisms, closely linked to the cystic fibrosis (CF) gene, in 82 Spanish families, in which the CF probands are either homozygous for non-delta F508 mutations or heterozygous for the delta F508 deletion and other CF mutations. The analysis provides genetic data for a new polymorphism for the closely linked marker pKM.19, which is very strongly associated with CF. Haplotypes generated with the four marker loci are also in strong disequilibrium with the non-delta F508 CF chromosomes. The data reported here are useful in 1 in 4 risk pregnancies of parents who have no living affected child, and when counselling close relatives of CF families who are negative for the major CF mutation. The data presented are useful in our population, in which the majority of CF mutations, apart from the delta F508 deletion, are uncommon. For other populations in which mutation heterogeneity is also very high, it still might be more feasible to use RFLPs for diagnostic purposes, when analysis for common mutations is negative and DNA is available from the index patient. The experience presented here provides a model for these population groups who in turn should obtain their own haplotype data. In addition, the model system for genetic counselling presented here might also be useful for other genetic disorders.  相似文献   

16.
Mosaicism constitutes a frequent complication of the genotype-phenotype relationship in genetic disease and is an important consideration for the estimation of transmission risk. Mosaicism has been identified in several hereditary cancer syndromes including retinoblastoma, familial adenomatous polyposis coli, von Hippel-Lindau disease and neurofibromatosis type 2. Recent data support the postulate that the frequency of mosaicism is increased in cancer predisposition syndromes characterised by high new mutation rates. Since the new mutation rate is very high in neurofibromatosis type 1 (NF1), mosaicism might reasonably be expected to be frequent among sporadic cases but this remains to be formally demonstrated. Here we summarise current knowledge of mosaicism in NF1, focusing on the types of mutations identified as well as their inferred developmental timing and representation in different cell types, and assess the potential impact of high frequency mosaicism on mutation screening in patients with apparent de novo NF1.  相似文献   

17.
We present the results of a study of the rate and origin of mutations in Duchenne muscular dystrophy (DMD). Depending on the type of mutation (deletion/duplication or point mutation) present in the patient, there are widely varying ratios of male to female mutation rates. In deletions, the male mutation rate is only 30% of the female one. In non-deletional/non-duplicational mutations (presumably containing a high proportion of point mutations) the male mutation rate is at least 2.2 as high as the female one and probably much higher. Allowing for the presence of autosomal recessive phenocopies we find that k in non-deletional/non-duplicational mutations is 40.3. These findings mean that the vast majority of deletions arise in oogenesis, while most point mutations stem from spermatogenesis. Previous investigations have shown that in other diseases and genes, most notably haemophilia B and A, but also the ZFY and ZFX genes, the male mutation rate for point mutations tends to be higher than the female one. Our results can be seen as a confirmation of this for the special case of DMD. The influence on risk figures is considerable. As an example, the risk of the mother of an isolated case of DMD without an apparent structural anomaly of the gene of being a carrier increases from 67% to at least 76%. Given the estimate of 40.3 for k, allowing for the presence of autosomal recessive phenocopies mentioned above, it increases even further to 98%. However, as confidence intervals are still large, more data are needed to improve the estimates. Germinal mosaicism in this context is discussed.  相似文献   

18.
Objective To establish individualized prenatal diagnosis program for families affected with Duchenne/Becker muscular dystrophy (DMD/BMD) and different clinical background using a variety of methods. Methods Multiplex ligation-dependent probe amplification (MLPA) was performed on 50 patients suspected for DMD/BMD. For single exon deletions of the DMD gene, PCR was used for validating the results. For those without any deletion or duplication, Sanger sequencing was used to screen for DMD gene mutations in the children and their mothers. Prenatal genetic testing was provided to female carriers using chorionic villus, amniocentesis or cord blood samples. To ensure the accuracy of diagnosis, all prenatal specimens were also subjected to linkage analysis. Results Among the 50 patients with DMD/ BMD, 23 harbored large deletions, 11 only had single exon deletions, 10 harbored duplications, and 5 had small scare mutations. No mutation was detected in one family. For 37 women undergoing prenatal diagnosis, 10 fetuses were identified as affected males, 6 were female carriers, while 21 were not found to carry any mutation. Testing of creatine kinase was consistent with the results of prenatal diagnosis. For a patient harboring exon 51 deletion, the same mutation was found in a fetus but not in their mother. The proband and fetus had inherited the same haplotype, which suggested that the mother probably has germline mosaicism for the mutation. Conclusion Application of individualized methods for analyzing pregnant women with different clinical background can minimize the risk for giving birth to further children affected with DMD/BMD. © 2018 West China University of Medical Sciences. All rights reserved.  相似文献   

19.
The fragile X syndrome phenotype of mental retardation is almost always caused by abnormal CGG trinucleotide amplification within the FMR1 gene. Occasionally fragile X syndrome results from point mutations or deletions within or around the FMR1 locus. We have identified a mentally retarded African American male with typical fragile X phenotype and a 300–400 base pair intragenic deletion near the CGG repeat segment, present in his peripheral blood lymphocytes with no apparent mosaicism. His mother, who is not retarded, has a full FMR1 CGG expansion mutation with 700–900 repeats. A review of 23 published cases with FMR1 gene deletions shows full FMR1 mutation in the mother of only 1 other propositus, a male with FMR1 full mutation/premutation/deletion mosaicism of his cultured skin fibroblasts and peripheral blood lymphocytes. The various deletions within FMR1 and their clinical significance are reviewed. Am. J. Med. Genet. 72:430–434, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

20.
Angelman syndrome (AS) results from a lack of maternal contribution from chromosome 15q11-13, arising from de novo deletion in most cases or rarely from uniparental disomy. These families are associated with a low recurrence risk. However, in a minority of families, more than one child is affected. No deletion has been found in these families, except one. The mode of inheritance in these families is autosomal dominant modified by imprinting. Sporadic cases, with no observable deletion, therefore pose a counselling dilemma as there could be a recurrence risk as high as 50%. We present a series of 93 AS patients, showing the relative contribution of these different genetic mechanisms. Eighty-one AS patients were sporadic cases while 12 cases came from six families. Sixty cases had deletions in 15q11-13 detected by a set of highly polymorphic (CA)n repeats markers and conventional RFLPs. Ten sporadic cases plus all 12 familial cases had no detectable deletion. In addition, two cases of de novo deletions occurred in a chromosome 15 carrying a pericentric inversion. In one of these the AS child had a cousin with Prader-Willi syndrome (PWS) arising from a de novo deletion in an inv(15) inherited from his father. One case arose from a maternal balanced t(9;15)(p24;q15) translocation. There were three cases of uniparental disomy. Five patients were monoallelic for all loci across the minimal AS critical region, but the presence of a deletion cannot be confirmed. In familial cases, all affected sibs inherited the same maternal chromosome 15 markers for the region 15q11-13. Two cases were observed with a de novo deletion starting close to the locus D15S11 (IR4-2R), providing evidence for the development of classical AS with smaller deletions. Cytogenetic analysis proved limited in its ability to detect deletions, detecting only 42 out of 60 cases. However, cytogenetic analysis is still essential to detect chromosomal abnormalities other than deletions such as inversions and balanced translocations since both have an increased risk for deletions. A staged diagnostic strategy based on the use of highly informative (CA)n repeat markers is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号