首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用热力模拟实验方法进行热压缩变形实验,研究了一种新型Al-Zn-Mg-Cu高强铝合金铸态组织在变形温度为300~450℃,应变速率为10-3~10s-1,压缩变形量为50%条件下的热变形行为,建立了该合金的热加工图。变形温度和应变速率对该合金流变应力的影响显著;实验参数条件下,该合金流变应力曲线呈现稳态动态回复型曲线特征。热加工图和组织分析表明:当应变较小时(ε=0.1),合金具备铸态组织特征,合适的热加工参数:350~450℃,应变速率10-3~10-2s-1;当应变较大时(ε=0.5),合金具备锻态组织特征,较佳的热加工参数:300~450℃,应变速率10-3~10-1s-1。  相似文献   

2.
在变形温度为750~1000℃、应变速率为0.01~10 s^(-1)条件下,对铸态BFe30-1-1铜镍合金进行了热压缩实验。综合分析摩擦和温升对合金流变应力的影响,利用修正后的流变应力曲线构建了BFe30-1-1铜镍合金的Arrhenius双曲正弦函数本构关系模型,基于动态材料模型构建合金的热加工图,研究合金热变形过程中的组织演变规律。结果表明:合金的峰值流变应力随着变形温度的降低或应变速率的增加而升高,摩擦和温升能够显著影响合金的真应力-真应变曲线,热变形过程中发生了动态再结晶,本研究构建的合金本构关系模型对峰值应力的预测值与修正后实验值的平均相对误差仅为3.77%,能够准确地预测合金在不同热变形条件下的流变应力。结合热加工图和微观组织分析,合金的较合理的热塑性变形工艺区间为变形温度900~1000℃、应变速率0.04~0.16 s^(-1),在该变形条件下热压缩后的样品可获得更多的动态再结晶组织。  相似文献   

3.
张鑫  张毅 《功能材料》2013,44(5):623-626,631
通过高温等温压缩试验,对Cu-Ni-Si-Ag合金在应变速率为0.01~5s-1、变形温度为600~800℃的动态再结晶行为以及组织转变进行了研究。结果表明,在应变温度为750、800℃时,合金热压缩变形流变应力出现了明显的峰值应力,表现为连续动态再结晶特征。同时从流变应力、应变速率和温度的相关性,得出了该合金高温热压缩变形时的热变形激活能Q和流变应力方程。并综合考虑应变速率与温度的影响,采用动态材料模型建立了该合金的热加工图,并利用热加工图分析了该合金不同区域的高温变性特征以及组织变化。  相似文献   

4.
在变形温度为750~1000℃、应变速率为0.01~10 s-1条件下,对铸态BFe30-1-1铜镍合金进行了热压缩实验。综合分析摩擦和温升对合金流变应力的影响,利用修正后的流变应力曲线构建了BFe30-1-1铜镍合金的Arrhenius双曲正弦函数本构关系模型,基于动态材料模型构建合金的热加工图,研究合金热变形过程中的组织演变规律。结果表明:合金的峰值流变应力随着变形温度的降低或应变速率的增加而升高,摩擦和温升能够显著影响合金的真应力-真应变曲线,热变形过程中发生了动态再结晶,本研究构建的合金本构关系模型对峰值应力的预测值与修正后实验值的平均相对误差仅为3.77%,能够准确地预测合金在不同热变形条件下的流变应力。结合热加工图和微观组织分析,合金的较合理的热塑性变形工艺区间为变形温度900~1000℃、应变速率0.04~0.16 s-1,在该变形条件下热压缩后的样品可获得更多的动态再结晶组织。  相似文献   

5.
2124铝合金的热压缩变形和加工图   总被引:1,自引:0,他引:1  
采用热模拟实验研究2124铝合金在应变速率为0.01~10s-1、变形温度为340~500℃条件下的流变应力行为。结果表明:2124铝合金热变形过程中的流变应力可用双曲正弦本构关系来描述,平均激活能为170.13kJ/mol。根据动态材料模型,计算并分析2124铝合金的加工图。利用加工图确定热变形的流变失稳区,并且获得了实验参数范围内的热变形过程的最佳工艺参数,其热加工温度为450℃左右,应变速率为0.01~0.1s-1。  相似文献   

6.
采用Gleeble-3180热模拟机,对喷射成形Al-Cu-Mg挤压态合金进行热压缩实验,温度范围为300~450 ℃,应变速率为0.01~10.00 s-1,变形量为60%。实验结果表明:喷射成形Al-Cu-Mg挤压态合金在热压缩变形中,流变应力随温度的升高而减小,随应变速率的增大而增大。采用基于双曲正弦函数的本构方程和Z参数来描述喷射成形Al-Cu-Mg挤压态合金的高温变形行为,得到热激活能Q为158.52 kJ/mol。分析应变为0.4和0.8时的3D耗散图和热加工图,发现应变从0.4增加至0.8时,加工性能发生明显改变。在温度范围为320~370 ℃、应变速率为6.68~10.00 s-1的区域有着较好的加工性能。  相似文献   

7.
采用Gleeble-1500热模拟试验机和透射电子显微镜研究了变形温度为300~900℃,应变速率为0.01~10s-1条件下Al_2O_3/Cu复合材料的高温流变行为和组织演变规律,并利用Arrhenius关系和Zener-Hollomn参数构建了合金的峰值屈服应力、变形温度和应变速率三者之间的本构方程。结果表明:Al_2O_3/Cu复合材料的流变应力-应变曲线为典型的动态再结晶类型,其曲线由加工硬化、动态软化和稳定流变3个阶段组成,当变形温度一定时,流变应力随应变速率的增大而增大,而当应变速率固定时,流变应力随变形温度的升高而减小;求解得到复合材料的结构因子lnA为15.2391,应力水平参数a为0.020788mm~2/N,应力指数n为5.933035,变形激活能Q为2.1697×10~5kJ/mol;随着变形温度的升高,基体内位错密度逐渐下降,并呈现出明显的再结晶特征,而当固定变形温度时,随着应变速率的增大,基体内位错密度呈先增大后下降趋势。基于微观组织演变和热加工图,Al_2O_3/Cu复合材料的最佳热加工参数范围为热加工温度500~850℃、应变速率低于0.1s-1。  相似文献   

8.
胡勇  陈威  李晓诚  彭和思  丁雨田 《材料导报》2017,31(16):144-149
通过Gleeble-1500热模拟机在500~600℃、应变速率0.01~10s~(-1)条件下的近等温热模拟压缩试验,建立合金本构方程和热加工图。结果表明:HMn62-3-3合金在热变形过程中发生动态再结晶行为,其峰值应力随变形温度的升高或应变速率的降低而降低;采用Arrhenius方程能够较好地拟合HMn62-3-3合金的流变行为,其热变形激活能为201.525kJ·mol~(-1);根据DMM模型,计算并建立了HMn62-3-3材料的热加工图,由此确定热变形过程中的最佳工艺参数为变形温度610~640℃,应变速率为2~10s~(-1)。  相似文献   

9.
目的 确定AlFeCoNiMo0.2高熵合金的热加工工艺参数,为该合金热挤压工艺的制定及优化提供有效依据.方法 采用Gleeble-3800热模拟试验机,在变形温度为900~1150℃,应变速率为0.001~1 s-1,真应变量为0.6的条件下对AlFeCoNiMo0.2高熵合金进行热压缩实验.基于Arrhennius模型对热压缩实验数据进行拟合,建立AlFeCoNiMo0.2高熵合金的Arrhennius本构方程,并绘制AlFeCoNiMo0.2高熵合金在不同真应变下的热加工图.结果 AlFeCoNiMo0.2高熵合金的流变应力值与应变速率呈正相关,与变形温度呈负相关;Arrhennius热变形本构方程的平均相对误差为3.97%;该合金热加工图中的流变失稳区分别为900~1120℃/0.1~1 s-1和1120~1150℃/0.2~1 s-1;热加工安全区为1075~1150℃/0.001~0.01 s-1;最佳热加工工艺参数为:1090~1125℃/0.001~0.002 s-1.结论 AlFeCoNiMo0.2高熵合金的热变形过程为加工硬化和动态再结晶为主的动态软化,建立的Arrhennius本构方程可较好地描述该合金的热变形行为,绘制的热加工图可为该合金热挤压工艺的制定及优化提供有效指导.  相似文献   

10.
Cu-2.32Ni-0.57Si-0.05P合金热压缩变形研究   总被引:1,自引:0,他引:1  
在Gleeble-1500D热模拟试验机上,对Cu-2.32Ni-0.57Si-0.05P合金在应变速率为0.01~5s-1、变形温度为600~800℃、最大变形程度为60%条件下,进行恒温压缩模拟实验研究.分析了实验合金在高温变形时的流变应力、应变速率及变形温度之间的关系,研究了变形温度对合金显微组织的影响.计算了合金高温热压缩变形时的应力指数n、应力参数α、结构因子A以及平均热变形激活能Q.结果表明:合金的流变应力随变形温度升高而降低,随应变速率提高而增大.热变形过程的流变应力可用双曲正弦本构关系来描述.当变形温度高于750℃时,合金流变曲线呈现出明显的动态再结晶特征,合金显微组织为完全的动态再结晶组织.合金的热加工宜在应变速率为0.1~1s-1、温度为700~800℃范围内进行.  相似文献   

11.
目的 建立近β钛合金Ti−6Mo−5V−3Al−2Fe−2Zr(质量分数)的热变形本构方程,绘制热加工图,确定该合金的流变失稳区和适宜加工区,为其在工业生产中热加工工艺参数的制定提供指导。方法 在变形温度700~ 850 ℃、应变速率0.000 5~0.5 s−1、真应变0.7的条件下,对近β钛合金Ti−6Mo−5V−3Al−2Fe−2Zr进行热压缩实验;基于Arrhenius方程建立该合金的热变形本构方程,并对方程进行验证;根据Prasad失稳准则,构建该合金的热加工图。结果 该合金的流变应力随着变形温度的升高而减小,随着应变速率的增大而增大;其热变形激活能为226.29 kJ/mol,本构方程为;通过热变形本构方程得到的峰值应力计算值与实验值平均误差为4.21%。结论 建立的热变形本构方程预测了流变应力,描述了该合金的热变形行为;通过叠加合金的能量耗散图和流变失稳图,获得了该合金的热加工图。基于热加工图确定该合金的流变失稳区为变形温度700~755 ℃与784~850 ℃、应变速率0.5~0.05 s−1,最佳加工区为变形温度836~850 ℃、应变速率0.000 5~0.005 s−1。  相似文献   

12.
通过Gleeble-3500热模拟实验机上进行热压缩实验,研究了变形温度为400~500℃,应变速率为0.01~10s~(-1)时2195铝锂合金的热变形行为。通过金相显微镜研究了热变形中显微组织的演变。研究结果表明,该合金流变应力随变形温度的升高而降低,随应变速率的提高而增大。该合金流变应力可采用Zener-Hollomon参数来描述,在获得流变应力σ解析表达式中A=7.08018×1012 s~(-1)、α=β/n1=0.01473、n1=5.42929,其热变形激活能为Q=190.27kJ/mol。热加工图表明AA2195铝锂合金适宜加工区为400~430,442~473℃,应变速率为0.01~0.2s~(-1)以及温度范围为477~500℃,应变速率为0.01~0.3s~(-1)的区域。  相似文献   

13.
易宗鑫  李小强  潘存良  沈正章 《材料导报》2021,35(18):18146-18152
本工作对等轴细晶TC4钛合金进行了热压缩实验,研究了变形温度为800~950℃、应变速率为0.01~10 s-1下TC4钛合金的变形行为,并建立相应的Arrhenius型本构方程和热加工图,再基于实验获得的真应力应变曲线对本构方程进行应变补偿修正.结果表明:合金的真应力值随温度升高、应变速率下降而减小;修正后本构方程真应力预测值与实验值相关系数R为0.985,相对误差ARRE为6.8%.结合热加工图和相应区域的电子背散射衍射(EBSD)分析可知:失稳区的温度为875~950℃,应变速率为0.3~10 s-1,组织特征表现为长条状晶粒;最适宜加工区的温度为800~875℃,应变速率为0.01~0.3 s-1,组织特征表现为等轴细晶.  相似文献   

14.
通过在Gleeble-1500D热模拟试验机上进行高温等温压缩试验,对Cu-0.4Cr-0.15Zr-0.04Y合金在应变速率为0.001~10s-1、变形温度为650~850℃、最大变形程度为50%条件下的流变应力行为进行了研究。分析了该合金在高温变形时的流变应力和应变速率及变形温度之间的关系,并研究了在热压缩过程中组织的变化。结果表明,热模拟试验中,应变速率和变形温度的变化强烈地影响合金流变应力的大小,流变应力随变形温度升高而下降,随应变速率提高而增大。从应变速率、流变应力和温度的相关性,得出了该合金高温热压缩变形时的应力指数(n)、应力参数(α)、结构因子(A)、热变形激活能(Q)和流变应力方程,变形温度对合金动态再结晶行为有强烈影响。  相似文献   

15.
冀宣名  向嵩  胡亚楠 《功能材料》2015,(8):8081-8085
在应变速率为0.01~10 s-1,变形温度为870~1 070℃,最大变形量为80%的条件下,利用Gleeble-3800热模拟机对TA12合金高温压缩变形行为进行研究。依据实验结果绘制真应力-应变曲线,分析变形参数与组织的关系。同时把应力-应变曲线作为计算应变速率敏感指数m、功率耗散因子η、失稳判据ξ的底层数据,研究应变速率、变形温度、变形量共同存在对应变速率敏感指数m、功率耗散因子η的影响,绘制失稳图对失稳区域进行识别,并将功率耗散图和失稳图叠加构建热加工图。结果表明,在变形温度较低时,温度的影响主要表现为α相形态和数量的变化,在变形温度较高时,主要表现为β晶粒粗化;应变速率的影响主要表现在变形时间上;较高的η和ξ区域为良好加工区域,较低的η和ξ的失稳变形参数区域为加工避免区域。本批次合金适宜加工参数为温度910~970℃,应变速率0.01~0.3 s-1。  相似文献   

16.
TB8钛合金的热变形行为及加工图   总被引:2,自引:0,他引:2  
采用Gleeble-1500热模拟机在变形温度为750~1100℃、应变速率为0.01~1s-1范围内对TB8钛合金进行了单道次热压缩变形试验,研究了其高温变形力学行为.结果表明:随着变形温度的升高和应变速率的降低材料的峰值应力和稳态应力显著降低;高温变形条件下TB8合金流变应力本构关系可以用双曲正弦方程和Z参数描述;建立并初步分析了基于动态材料模型的TB8钛合金热加工图,当温度为950~1100℃、应变速率为0.01s-1时TB8合金的能量耗散效率较高.  相似文献   

17.
在Gleeble-1500热模拟仪上进行热压缩实验,研究了变形温度为350~500℃,应变速率为0.001,0.01,0.1和1s-1时Al-3%Cu-2%Li合金的热变形行为。利用双曲正弦本构关系分析热变形中的流变应力,采用金相分析热变形中合金的显微组织变化。结果表明,该合金流变应力的大小受变形温度、应变速率的强烈影响,它随变形温度升高而降低,随应变速率提高而增大,该合金高温流变应力可采用Zener-Hollomon参数的函数来描述,其热变形激活能为325.48kJ/mol。  相似文献   

18.
为了研究ZK60镁合金的热变形行为,采用Gleebe-1500热模拟机在变形温度为423~673K、应变速率为0.001~10s-1条件下对合金进行的热压缩试验.分析合金流变应力与应变速率、变形温度之间的关系,通过引入Z参数建立合金流变应力本构方程,并观察合金变形过程中的显微组织演变.结果表明:变形温度低于473K且应变速率大于0.1s-1时试样发生宏观开裂;在变形温度较高和应变速率较低时,合金真应力-真应变曲线具有动态再结晶特征.随变形温度升高和应变速率的降低流变应力减小,热压缩后的组织中再结晶现象越明显;应变速率越高,再结晶晶粒越细小.  相似文献   

19.
基于摩擦修正的 TA15 钛合金热变形行为及加工图   总被引:1,自引:1,他引:0       下载免费PDF全文
目的采用Gleeble-3500热模拟实验机,研究TA15钛合金在变形温度为900~1050℃、应变速率为0.01~1 s-1条件下的热压缩流变行为及变形组织。方法采用一种简单有效的方法修正了TA15钛合金热压缩实验中摩擦引起的误差;计算出了TA15钛合金的应力指数和热变形激活能,建立了含有Z参数的双曲正弦函数形式本构方程;基于Murty准则,建立了其加工图。结果TA15钛合金的热压缩流变行为可采用含有Z参数的双曲正弦函数形式本构方程来描述,其平均变形激活能为625.884 kJ/mol;通过分析热加工图,确定了最优热变形工艺参数为:T=950℃,ε=0.01 s-1。结论研究结果可为TA15钛合金的塑性变形数值模拟提供基础,对合理制定热加工工艺具有重要指导意义。  相似文献   

20.
在Gleeble-3800热模拟试验机上进行高温压缩实验,研究0Cr16Ni5Mo低碳马氏体不锈钢在变形温度为900~1150℃、应变速率为0.01~10s-1条件下的热变形行为。采用双曲正弦模型确定了该材料的热变形参数随应变量的变化规律,建立了相应的热变形本构方程。根据动态材料模型建立并分析了其热加工图,同时观察了变形组织。结果表明:在热压缩过程中,流变应力随变形温度的升高而降低,随应变速率的升高而增加,变形条件对材料的组织结构有较大影响。材料热变形参数与应变量之间可采用四次函数关系式表示,并且具有很好的相关性,获得了该材料的最佳热变形工艺参数范围为:变形温度980~1150℃,应变速率0.01~0.2s-1。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号