首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 77 毫秒
1.
Multifunctional carboxylic acids have been used as nonformaldehyde durable press finishing agents for cotton. In previous research we found that maleic acid (MA) and itaconic acid (IA) polymerize in situ on cotton fabric at elevated temperatures when both potassium persulfate (K2S2O8) and sodium hypophosphite (NaH2PO2) are present, thus imparting wrinkle resistance to the treated cotton fabric. We also found that MA and IA polymerize in aqueous solutions in the presence of K2S2O8 and NaH2PO2. In this research, we compared the effectiveness of poly(itaconic acid) (PIA) applied to cotton fabric as a polymer and IA applied as a monomer and allowed to polymerize in situ for crosslinking cotton cellulose. We found that IA is more effective in esterifying cotton cellulose and imparting a high level of wrinkle resistance to the fabric as it polymerizes in situ than PIA applied as a polymer. We also found that tensile strength loss of the cotton fabric crosslinked by IA polymerizing in situ as a function of fabric wrinkle recovery angle is practically the same as that crosslinked by PIA applied as a polymer. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 319–326, 2001  相似文献   

2.
In this article, polyaniline (PANI)/cotton composite were prepared by in situ polymerization on the grafted cotton. First, acrylamide was grafted onto cotton cellulose using a radical graft polymerization process and some influencing factors were studied. Then polyaniline/cotton conductive composite fabrics were prepared by chemical in situ polymerization on the grafted cotton. The influences of the concentration of ammonium persulfate, aniline, hydrochloric acid, and the reaction time to the conductivity and K/S of composite fabric were studied. By contrasting, graft brought on an improvement of about one order of magnitude to the conductivity of composite fabric. The strength, TG, FTIR‐ATR, and SEM of prepared fabric were measured. The thermal stability and tear strength of composite fabric reduced, whereas PANI exhibited a rough but uniform, coherent PANI coating on surface of cotton fiber. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

3.
Glactomannan gum was isolated from Gleditsia triacanthos seeds. It was then subjected to polymerization with acrylic acid using potassium persulfate initiation system. Products of the polymerization reactions are referred to as composites. Technical evaluation of the latter as thickening agent in reactive printing using cotton fabric was studied. The use of composite in printing cotton fabric with natural dye was also studied. It was found that the composite pastes are characterized by a non‐Newtonian pseudoplastic behavior, and their apparent viscosity increases on increasing the concentration of acrylic acid. The composite can be diluted by water and its viscosity increases by neutralization. Printing pastes of the composite are very stable for storing, in contrast with those of natural gum which exhibit no stability for storing. It was also found that reactive prints thickened with the composite display relatively higher K/S than those thickened with native gum do. Meanwhile, K/S values of prints thickened with the composite are comparable with the values of those thickened with sodium alginate. Printed fabrics using the composite as a thickener exhibit soft handle, and their overall fastness properties are almost equal to, if not higher than, the properties of those printed using sodium alginate. On the other hand, printing of cotton fabric with a natural dye using the composite as a thickener results in prints with K/S values lower than those obtained using commercial synthetic thickener; but the overall fastness properties are nearly the same. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 931–943, 2006  相似文献   

4.
The high flammability of cotton fleece makes it necessary to apply a flame retardant system on cotton fleece so that it can meet the federal regulation ‘Standard for the Flammability of Clothing Textiles’ (16 CFR 1610). The objective of this research was to reduce the flammability of cotton fleece using the phosphorus‐containing maleic acid oligomers (PMAO) synthesized by aqueous free radical polymerization of maleic acid. We found that PMAO can be bound to cotton fleece by esterifying with cotton cellulose with sodium hypophosphite as the catalyst. Both the 45° flammability and limiting oxygen index data indicated that the treatment of cotton using PMAO reduced the flammability of cotton fleece. The micro‐scale combustion calorimetric data revealed that PMAO reduced the peak heat release rate and heat release capacity of the treated cotton woven fabric. The cotton fleece treated with PMAO/NaH2PO2 passed the federal flammability test (16 CFR Part 1610) and achieved ‘Class 1’ flammability. The PMAO bound to cotton was durable to multiple home laundering cycles. The treated fleece also showed high strength retention with little change in fabric whiteness. The use of triethanolamine as an additive modestly enhanced the performance of PMAO with no significant changes in fabric physical properties. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Polycarboxylic acids have been used as nonformaldehyde durable press finishing agents for cotton fabrics. Previously, we found that itaconic acid (IA) polymerized in situ on cotton fabric and also in an aqueous solution in the presence of a K2S2O8/NaH2PO2 initiation system. Both poly(itaconic acid) (PIA) and the polymer formed by in situ polymerization of IA are able to crosslink cotton cellulose, thus imparting wrinkle resistance to cotton. In this research, we compared the performance of the cotton fabric crosslinked by PIA and that crosslinked by in situ polymerization of IA. The fabric treated with PIA and that treated with IA had similar wrinkle recovery angles. The cotton fabric treated with IA, however, lost more tensile strength than that treated with PIA due to cellulose degradation. We determined the magnitude of the fabric tensile strength loss attributed to crosslinking by separating the tensile strength loss due to cellulose degradation from the total tensile strength loss, and found that the tensile strength loss caused by crosslinking for the fabric treated with PIA was significantly higher than that for the fabric treated with IA. This can probably be attributed to more concentrated crosslinkages formed on the near surface of the PIA‐treated cotton fabric. PIA had poorer penetration into the amorphous cellulose region in fiber interior due to its much larger molecular size, thus increasing its concentration on the fabric's near surface. The data also suggest that more concentrated crosslinkages on the fabric surface reduced fabric abrasion resistance. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 87: 2023–2030, 2003  相似文献   

6.
Functional copolymer/organo‐silicate [N,N′‐dimethyldodecyl ammonium cation surface modified montmorillonite (MMT)] layered nanocomposites have been synthesized by interlamellar complex‐radical copolymerization of preintercalated maleic anhydride (MA)/ organo‐MMT complex as a ‘nano‐reactor’ with n‐butyl methacrylate (BMA) as an internal plasticization comonomer in the presence of radical initiator. Synthesized copolymers and their nanocomposites were investigated by dynamic mechanic analysis, X‐ray diffraction, SEM, and TEM methods. It was found that nanocomposite dynamic mechanical properties strongly depend on the force of interfacial MA … organo‐MMT complex formation and the amount of flexible n‐butyl ester linkages. An increase in both of these parameters leads to enhanced intercalation and exfoliation in situ processes of copolymer chains and the formation of hybrid nanocomposites. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

7.
In recent years extensive efforts have been made to use multifunctional carboxylic acids as formaldehyde-free crosslinking agents for cotton to replace the traditional formaldehyde-based N-methylol reagents. In our previous research we found that a polycarboxylic acid esterifies cellulose through the formation of a five-membered cyclic anhydride intermediate by dehydration of two adjacent carboxyl groups. In this research we used Fourier transform IR (FTIR) spectroscopy to study the formation of cyclic anhydride intermediates and crosslinking of cotton by 1,2,4-butanetricarboxylic acid (BTA) and 1,2,3-propanetricarboxylic acid (PCA). BTA and PCA form five-membered cyclic anhydrides in the same temperature range. Both acids form the anhydrides at lower temperatures when a catalyst is present. When an acid molecule is bonded to cotton through an ester linkage, only PCA is able to form a second anhydride intermediate. We found that PCA is a more effective crosslinking agent, and it imparts higher levels of wrinkle resistance to the cotton fabric than BTA. Therefore, the formation of a five-membered cyclic anhydride by a polycarboxylic acid accelerates the esterification of cotton by the acid. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 2142–2150, 2001  相似文献   

8.
Graft copolymerization of acrylate monomers, e.g., methyl methacrylate and ethyl methacrylate, onto bleached sulfonated jute–cotton‐blended fabric was carried out in an aqueous medium, using potassium persulfate as an initiator under the catalytic influence of ferrous sulfate in a nitrogen atmosphere. The parameter variables, e.g., concentrations of monomer, potassium persulfate, ferrous sulfate, reaction time, and reaction temperature, directly influenced the percent graft yield. The percent graft yield increased to a certain value in each variable, and the percent graft yield of methyl methacrylate and ethyl methacrylate was about 15.9 and 17.1%, respectively. Polymer grafting was characterized by thermogravimetric analysis, infrared spectroscopy, and X‐ray diffractometry. Grafting improved the thermal stability, protected from photo‐oxidative degradation, decreased the dyeability, and had positive impact on fastness characteristics. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4393–4398, 2006  相似文献   

9.
In this research, we used a new redox free radical initiation system consisting of potassium persulfate (K2S2O8) and sodium hypophosphite (NaH2PO2). In the presence of NaH2PO2, the thermal decomposition of K2S2O8 is accelerated, and the temperature required for the formation of free radical is reduced. We polymerized maleic acid (MA) using the K2S2O8/NaH2PO2 initiation system in an aqueous solution, and monitored the polymerization process with FT‐Raman spectroscopy. The Raman spectroscopy data indicate the formation of a saturated carboxylic acid with the disappearance of the characteristic bands of MA as the thermal decomposition of K2S2O8 progresses, thus indicating the formation of poly(maleic acid) (PMA). We also found that itaconic acid (IA) polymerizes in the presence of the new initiation system. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 223–228, 2001  相似文献   

10.
Using 2‐acrylamido‐2‐methyl propane sulfonic acid (AMPS), acrylamide (AM), N,N‐dimethyl acrylamide (NNDMA), and maleic anhydride (MA), a new dispersive type fluid loss control additive (FLCA) AMPS/AM/NNDMA/MA (PANM) was synthesized by free radical aqueous solution copolymerization, and the new FLCA could be used without dispersant existing in the cement. The optimal PANM (OPANM) was obtained under the optimum reaction conditions: mole ratio of AMPS/AM/NNDMA/MA = 4/2.5/2.5/1, monomer concentration = 32.5%, amount of (by weight of monomer) ammonium persulfate/sodium bisulfate = 1.0%, pH value = 4, and temperature = 40°C. The synthesized copolymer OPANM was identified by FTIR analysis. The evaluation results show the OPANM has excellent dispersing power, fluid loss control ability, thermal resistant, and salt tolerant ability. The OPANM was even stable when the temperature was below 300°C proved by TG analysis. The thickening time of the slurry containing the synthesized additive reduces as the temperature increases. The copolymer OPANM is expected to be an excellent FLCA. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

11.
Graft copolymerization of methacrylic acid (MAA) onto guar gum (GG) was carried out by free radical initiation mechanism by using potassium persulfate (PPS) as an initiator. It was found that % grafting, grafting efficiency, and % conversion were all dependent on the concentration of PPS, MAA, reaction temperature, and reaction time. Using PPS, the maximum % grafting was ascertained to be 241 at the optimum conditions of 60°C reaction temperature, 3 h of reaction time, 1.1 mmol of PPS, and 0.058 mol of MAA. Plausible mechanism for grafting reaction was suggested. The graft copolymer formed was characterized by Fourier transform infrared and differential scanning calorimetry. The graft copolymer formed could find applications in drug delivery. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 618–623, 2006  相似文献   

12.
This work describes the synthesis and macromolecular reactions of maleic anhydride (MA)–acrylic acid (AA) binary reactive copolymers with γ‐aminopropyltriethoxysilane (APTS) as a polyfunctional crosslinker. Copolymers with a given composition of MA–AA (47.17–52.83 wt %) were synthesized by radical binary copolymerization with benzoyl peroxide as an initiator in p‐dioxane at 70°C in nitrogen atmosphere and initial monomer ratio of 1 : 1. It is shown that the network structure is formed in MA–AA/APTS in water by intermolecular reaction between the anhydride unit and the amine group, as well as between the etoxysilyl fragment and free carboxyl groups of the acrylic acid and maleic anhydride unit. Swelling parameters such as beginning time of hydrogel formation, initial rate of swelling, swelling rate constant, equilibrium swelling, and equilibrium water content were determined for copolymer/APTS/water systems with various copolymer/crosslinker ratios. Formation of a hyperbranched network structure through the fragmentation of side‐chain reactive groups in the studied systems was confirmed by FTIR, TGA, and DSC methods. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 4009–4015, 2003  相似文献   

13.
Multifunctional carboxylic acids, such as 1,2,3,4‐butanetetracarboxylic acid (BTCA), have been used as crosslinking agents for cotton cellulose to produce wrinkle‐resistant cotton fabrics and garments. Polycarboxylic acids were used to bond hydroxy‐functional organophosphorus oligomer to cotton, thus imparting durable flame retarding properties to the cotton fabric. This research investigated the chemical reactions between the hydroxy‐functional organophosphorus compound and BTCA on cotton. BTCA crosslinks cotton cellulose through the formation of a 5‐membered cyclic anhydride intermediate and esterification of the anhydride with cellulose. In the presence of the organophosphorus compound, BTCA reacts with both the organophosphorus compound and cellulose, thus functioning as a binder between cotton cellulose and the organophosphorus compound and making the flame retarding system durable to laundering. The cotton fabric treated by the combination of the organophosphorus compound and BTCA demonstrated lower wrinkle resistance and less tensile strength loss than that treated by BTCA alone. The phosphorus retention on the cotton fabric after one home laundering cycle was approximately 70%. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
Functional copolymer/clay hybrids were synthesized by radical‐initiated interlamellar copolymerization of maleic anhydride/maleic acid and acrylic acid with 2,2′‐azobis(2‐methylpropionamidine) dihydrochloride as a water‐soluble ionizable radical initiator in the presence of reactive (octadecylamine‐montmorillonite (ODA‐MMT)) and non‐reactive (dimethyldodecylammonium‐montmorillonite) organoclays at 60 °C in aqueous medium under nitrogen atmosphere. The monomers were dissolved in aqueous medium, and the two types of clay particles used were easily dissolved and dispersed partially swollen, respectively, in deionized water. Structure, thermal behaviour and morphology of the synthesized nanocomposites were investigated using Fourier transform infrared spectroscopy, X‐ray diffraction, differential scanning calorimetry, thermogravimetric analysis, and scanning and transmission electron microscopy. It is demonstrated that intercalative copolymerization proceeds via ion exchange between organoclays and carboxylic groups of monomers/polymers, which essentially improves interfacial interactions of polymer matrix and clay layers through strong hydrogen bonding. In the case of intercalative copolymerization in the presence of ODA‐MMT clay, a similar improvement is provided by in situ hydrogen bonding and amidolysis of carboxylic/anhydride groups from copolymer chains with primary amine groups of ODA‐MMT. The nanocomposites exhibit higher degree of intercalation/exfoliation of copolymer chains, improved thermal properties and fine dispersed morphology. Copyright © 2011 Society of Chemical Industry  相似文献   

15.
Multifunctional carboxylic acids, such as 1,2,3,4‐butanetetracarboxylic acid (BTCA), were used to bond a hydroxy‐functional organophosphorus oligomer (FR) to cotton fabric in the presence of a catalyst, such as sodium hypophosphite (NaH2PO2). Previously, it was found that the cotton fabric treated with FR and BTCA showed a high level of phosphorus retention after one home laundering cycle. However, the flame retardant properties quickly deteriorated as the number of home laundering cycles was increased. In this research, it was found that the free carboxylic acid groups bound to the cotton fabric form an insoluble calcium salt during home laundering, thus diminishing the flame retardant properties of the treated cotton fabric. It was also found that the free carboxylic acid groups on the treated cotton fabric were esterified by triethanolamine (TEA), and that the formation of calcium salt on the fabric was suppressed by the esterification of the free carboxylic acid groups by TEA. The cotton fabric treated with BTCA and the hydroxy‐functional organophosphorus oligomer significantly improved its flame retardance when a new catalyst system consisting of hypophosphorous acid (H3PO2) and TEA was used in the system. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
过硫酸盐引发棉纤维接枝的研究   总被引:1,自引:0,他引:1  
以过硫酸盐与硫代硫酸钠为引发剂,使丙烯酰胺与棉纤维进行接枝共聚,研究了过硫酸盐的加入方式和加入量对接枝反应的影响,发现采用过硫酸铵与过硫酸钾两种氧化剂、两步加入的办法能够克服体系中氧气的阻聚作用,又能得到较高的单体转化率和接枝率。  相似文献   

17.
A continuous process for the photoinitiated copolymerization of vinyl phosphonate oligomer (MW 0.5–1.0 kg) and N-methylolacrylamide from aqueous solutions with cotton printcloth and a sateen fabric was investigated. The free radical reactions, initiated on the cellulose molecules by exposure of the padded cotton fabric to UV radiation gave a flame-resistant (DOC FF 3-71 test) textile product. The effects of several variables on the efficiency of oligomer and monomer conversion to polymer add-on were determined, with maximum efficiencies being 75–85%. Variables were fabric speed through the reactor (0.006–0.039 m/sec), light transmission through Pyrex or quartz windows in the tunnel, four sets of interchangeable tri-power UV lamps having different spectral distributions and relative intensities, and heat buildup within the reactor. Selected samples of these modified cotton fabrics were evaluated for flame resistance, some textile properties, and elemental phosphorus and nitrogen analysis. Copolymer and phosphorus distribution within and between the cotton fibers were illustrated by transmission electron microscopy and by energy dispersive x-ray analysis.  相似文献   

18.
This article reports the cointercalation of acrylic acid (AA) and 2‐acrylamido‐2‐methylpropane sulfonic acid (AMPS) in the interlayer region of Mg2Al layered double hydroxide (LDH) and the application of this inorganic–organic composite material in the field of water superabsorbent. The monomers of AA and AMPS were cointercalated into galleries of Mg2Al−LDH (denoted as AA−AMPS/LDH) with various molar ratios by ion‐exchange method, which was confirmed by powder X‐ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), and elemental analysis. The polymer‐based superabsorbent was prepared through in situ free‐radical aqueous copolymerization of AA and AMPS, with AA−AMPS/LDH as additive, N,N′‐methylenebisacrylamide (NMBA) as crosslinker and potassium persulfate (KPS) as initiator. The composition of this poly(AA‐co‐AMPS)/LDH was demonstrated as a good water superabsorbent. The LDH content, water absorbency, thermal stability, and swelling rate of this superabsorbent were also investigated in detail. Results showed that the incorporation of a 5 wt % AA−AMPS/LDH into polymer matrix increased its water absorbency significantly by 27.7% (in water) and by 51.5% (in 0.9 wt % NaCl solution). © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
Low‐density polyethylene/polyamide 6 (LDPE/PA6) blends were in situ formed by reactive extrusion, in which in situ polymerization of ε‐caprolactam (CL) and in situ copolymerization of maleic anhydride grafted low‐density polyethylene (LDPE‐MA) and CL took place simultaneously. The latter reaction could be considered as in situ compatibilization, and the influence of in situ compatibilization on the morphologies, thermal properties, and rheological behaviors of the blends was investigated in this work. Scanning electron microscopy showed that the in situ compatibilization could dramatically reduce the dispersed phase sizes and narrow the size distribution. The thermal properties indicated that in differential scanning calorimetry (DSC) cooling scans, fractionated crystallization of the PA6 component was observed in all cases and was promoted with increasing the amount of LDPE‐MA. The DSC second heating scans showed the in situ compatibilization could stimulate the formation of the less stable γ‐crystalline form of PA6 in the blends. Dynamic rheological experiments revealed the in situ compatibilization had enhanced the viscosity, storage modulus, and loss modulus of the blend and reduce the corresponding slope values of the storage modulus and loss modulus. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

20.
In this study, the effects of polycarboxylic acid sodium salt on the dyeing of cotton with reactive dyes were evaluated by measuring and comparing the K/S values and dyeing fastnesses of the dyed cotton fabric samples. Results showed that the K/S value and dyeing fastness of cotton fabrics dyed with polycarboxylic acid sodium salt, substituting inorganic salts as exhausting agent were close to that of with sodium chloride when dip‐dyeing process was used. While, in pad‐dry dyeing, the K/S value of cotton fabric samples dyed with polyacid salts as exhausting agent was higher than that of with sodium sulfate, and the dyeing fastnesses of these samples were nearly the same. The dyeing mechanism of cotton fabric with reactive dye, using polycarboxylic acid sodium salt as exhausting agent was analyzed. The dyeing exhausting mechanism of reactive dye seems different when the inorganic salt and polycarboxylic acid sodium salt were used as exhausting agent in the dyeing of cotton fabric with reactive dye. The polycarboxylic acid sodium salt, as weak electrolyte, increased the dye‐uptake of reactive dye on cotton fabric not only by screening negative charges on cotton surface, but also by the effect of salting‐out or hydrophobic combination. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号