首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hydrological and geomorphological effects of an exceptional rainstorm event that occurred in the central Spanish Pyrenees during 19–21 October 2012 were studied in five experimental catchments under various land covers: (i) subhumid badlands; (ii) dense forest; (iii) an abandoned farmland area recolonized by shrubs and forest patches; and (iv) subalpine grasslands. Hydrographs and sedigraphs demonstrated that vegetation cover is a major factor affecting the control of floods even during exceptional rainstorms, at least at the spatial scale at which the phenomenon was studied (catchment sizes: 0.3–2.8 km2) and under dry catchment conditions. The combined precipitation over the two days (c. 250 mm) was the greatest for any two‐day event recorded since 1950 in the central‐western Pyrenees for all but one of the stations in the study. Five pulses of most intense rainfall were recorded. The forested catchment did not react to the two most intense rainfall pulses, because of the very low antecedent level of the water table. The main peak flow occurred only when at least a part of the catchment was saturated. The abandoned farmland catchment had two small peak discharges at the beginning of the event, which were produced by infiltration excess overland flow from eroded areas close to the main stream. During the third most intense rainfall period a large part of this catchment contributed to runoff and a relatively high peak discharge was produced. The badland catchment reacted immediately from the beginning of the rainstorm, yielding very high discharges accompanied by high suspended sediment concentrations. The subalpine catchment showed a hydrograph mirroring the hyetograph, with brief but intense hydrological responses to increased precipitation, because of the marked gradients and the presence of bare rock in the headwaters. A high volume of bedload was carried during the peak discharge. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
In Australia, multidecadal periods of floods and droughts have major economic consequences. Due to the short duration of Australian instrumental precipitation records, it is difficult to determine the patterns of these multidecadal periods. Proxy records can be used to create long‐term rainfall reconstructions for regions that are lacking instrumental data. However, the spatial extent over which single‐site proxy records can be applied is poorly understood. Southeast Queensland (SEQ) is an area where tree rings can be used to reconstruct long‐term rainfall patterns, but their regional representation is unknown. In this study, the spatial variability in rainfall across SEQ is investigated from 1908 to 2007 using 140 instrumental rainfall stations. Pearson correlation analysis between stations is used to create groups at the r = 0.80, 0.85, and 0.90 correlation levels, and then annual deviations from the mean are determined. These patterns indicate that rainfall is not uniform across SEQ but can be broken into 2 main spatially consistent groups. Each of these groups is broken down into several subgroups with higher correlation levels. Long‐term streamflow records are found to be correlated to rainfall patterns local to the streamflow stations, indicating that analysis of extreme events should consider spatial precipitation variability. Finally, the only currently available proxy rainfall reconstruction for the region, a 140‐year Toona ciliata tree ring width record from Lamington National Park, is compared to rainfall groups at different correlation levels across all of SEQ. The correlation between the reconstruction and the rainfall station groupings is best for the groups within which the tree‐ring record is spatially located, and this correlation improves as rainfall group correlation increases. Correlation is nearly nonexistent for groupings located at a distance from the tree‐ring site. These results demonstrate the importance of assessing the spatial variability of precipitation so that the spatial applicability of proxy records can be assessed.  相似文献   

3.
In this study, monthly and annual Upper Blue Nile Basin rainfall data were analyzed to learn the rainfall statistics and its temporal and spatial distribution. Frequency analysis and spatial characterization of rainfall in the Upper Blue Nile Basin are presented. Frequency analysis was performed on monthly basin rainfall. Monthly basin average rainfall data were computed from a network of 32 gauges with varying lengths of records. Monthly rainfall probability distribution varies from month to month fitting Gamma‐2, Normal, Weibull and Log‐Normal distributions. The January, July, October and November basin rainfall fit the Gamma‐2 probability distribution. The February, June and December ones fit Weibull distribution. The March, April, May and August rainfall fit Normal distribution. The September rainfall fits Log‐Normal distribution. Upper Blue Nile Basin is relatively wet with a mean annual rainfall of 1423 mm (1960–2002) with a standard deviation of 125 mm. The annual rainfall has a Normal probability distribution. The 100‐year‐drought basin annual rainfall is 1132 mm and the 100‐year‐wet basin annual rainfall is 1745 mm. The dry season is from November through April. The wet season runs from June through September with 74% of the annual rainfall. October and May are transition months. Monthly and annual rainfalls for return periods 2‐, 5‐, 10‐, 25‐, 50‐ and 100‐year dry and wet patterns are presented. Spatial distribution of annual rainfall over the basin is mapped and shows high variation with the southern tip receiving as high as 2049 mm and the northeastern tip as low as 794 mm annual average rainfall. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Intense Mediterranean precipitation can generate devastating flash floods. A better understanding of the spatial structure of intense rainfall is critical to better identify catchments that will produce strong hydrological responses. We focus on two intense Mediterranean rain events of different types that occured in 2002. Radar and rain gauge measurements are combined to have a data set with a high spatial (1 × 1 km2) and temporal (5 min) resolution. Two thresholds are determined using the quantiles of the rain rate values, corresponding to the precipitating system at large and to the intense rain cells. A method based on indicator variograms associated with the thresholds is proposed in order to automatically quantify the spatial structure at each time step during the entire rain events. Therefore, its variability within intense rain events can be investigated. The spatial structure is found to be homogeneous over periods that can be related to the dynamics of the events. Moreover, a decreasing time resolution (i.e., increasing accumulation period) of the rain rate data will stretch the spatial structure because of the advection of rain cells by the wind. These quantitative characteristics of the spatial structure of intense Mediterranean rainfall will be useful to improve our understanding of the dynamics of flash floods.  相似文献   

5.
Soil erosion by water is one of the main environmental concerns in the drought‐prone Eastern Africa region. Understanding factors such as rainfall and erosivity is therefore of utmost importance for soil erosion risk assessment and soil and water conservation planning. In this study, we evaluated the spatial distribution and temporal trends of rainfall and erosivity for the Eastern Africa region during the period 1981–2016. The precipitation concentration index, seasonality index, and modified Fournier index have been analysed using 5 × 5‐km resolution multisource rainfall product (Climate Hazards Group InfraRed Precipitation with Stations). The mean annual rainfall of the region was 810 mm ranging from less than 300 mm in the lowland areas to over 1,200 mm in the highlands being influenced by orography of the Eastern Africa region. The precipitation concentration index and seasonality index revealed a spatial pattern of rainfall seasonality dependent on latitude, with a more pronounced seasonality as we go far from the equator. The modified Fournier index showed high spatial variability with about 55% of the region subject to high to very high rainfall erosivity. The mean annual R‐factor in the study region was calculated at 3,246 ± 1,895 MJ mm ha?1 h?1 yr?1, implying a potentially high water erosion risk in the region. Moreover, both increasing and decreasing trends of annual rainfall and erosivity were observed but spatial variability of these trends was high. This study offers useful information for better soil erosion prediction as well as can support policy development to achieve sustainable regional environmental planning and management of soil and water resources.  相似文献   

6.
Understanding precipitation variations on various timescales and their correlations is important for assessment of flood risk and utilization of water resources. In this study, the spatial and temporal patterns of precipitation concentration in the upper reaches of the Huai River, China, were investigated using two indices: the precipitation concentration index (PCI) and the concentration index (CI) for measuring seasonality and daily heterogeneity using monthly and daily precipitation series, respectively. In particular, the trends of PCI and CI were tested by the Mann–Kendall method, and relationship among PCI, CI and percentage of precipitation contributed by the rainiest days was analyzed by the linear correlation analysis. The results show a significant seasonality of the rainfall distribution and very in homogeneous temporal distribution of the daily rainfall in the south part of the study area, especially in the three reservoirs. Positive trends in the PCI and CI were found at most stations, although none of the PCI trends were statistically significant. Daily heterogeneity of the rainfall in a year is highly correlated with the heavy rainfall amount of the 15 % rainiest days, and seasonality in rainfall distribution over a year can be partly explained by the daily rainfall heterogeneity.  相似文献   

7.
Hone‐Jay Chu 《水文研究》2012,26(21):3174-3181
A spatially autocorrelated effect exists in precipitation of a mountainous basin. This study examines the relationship between maximum annual rainfall and elevation in the Kaoping River Basin of southern Taiwan using spatial regression models (i.e. geographically weighted regression (GWR), simultaneous autoregression (SAR), and conditional autoregression (CAR)). Results show that the GWR, SAR, and CAR models can improve spatial data fitting and provide an enhanced estimation for the rainfall–elevation relationship than the ordinary least squares approach. In particular, GWR achieves the most accurate estimation, and SAR and CAR achieve similar performance in terms of the Akaike information criterion. The relationship between extreme rainfall and elevation for longer duration is more concise than that for short durations. Results show that the spatial distribution of precipitation depends on elevation and that rainfall patterns in study area are heterogeneous between the southwestern plain and the eastern mountain area. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
In this article, by using the daily precipitation data measured at 58 meteorological stations, spatial and temporal variability of daily precipitation including zero rainfall values (called “precipitation”) and without zero rainfall values (called “rain”) and four precipitation extrema (P0, P20, P50, and P100 representing the daily precipitation with the magnitude smaller than 0.1 mm, bigger than 20 mm, 50 mm, and 100 mm per day, respectively) in the Yangtze River Delta (YRD) during 1958–2007 were analyzed, and the effects of urbanization were further investigated. Results indicate that (i) differing from the downward trends in 1958–1985, daily precipitation and rain in 1986–2007 show slowly downward trends in the mid YRD but show upward trends in the northern and southern YRD. (ii) Spatial and temporal variability of the rain is more complex than daily precipitation. Both of them become smaller but show more obvious fluctuations in 1986–2007. (iii) Urbanizations cause not only the urban rainfall island problem but also more obvious fluctuations of rain intensity in the mid YRD, reflecting more uncertainty of daily precipitation variability. (iv) Urbanizations have little effects on the variability of P0 and P100 but cause notable increases of P20 and P50. (v) The spatial variability of daily precipitation and precipitation extrema in 1958–1985 clearly shows a breakpoint at 30°20′N latitude, but the breakpoint disappears afterward because of the effects of urbanization. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Rainfall and flood data are relatively sparse in semi‐arid areas; hence there have been relatively few investigations into the relationships between rainfall inputs and flood generation in these environments. Previous work has shown that flood properties are influenced by a combination of precipitation characteristics including amount, intensity, duration and spatial distribution. Therefore floods may be produced by high intensity, short duration storms, or longer duration, low intensity rainfall. Most of this research has been undertaken in small catchments in either hyper‐arid or relatively high rainfall Mediterranean climates. This paper presents results from a 6 year data record in south‐east Spain from research conducted in two basins, the Rambla Nogalte (171 km2) and the Rambla de Torrealvilla (200 km2). Data cover an area of approximately 500 km2 and an annual average rainfall of 300 mm. At coarse temporal resolutions gauges spread over large areas record similar patterns of rainfall, although spells of rain show much more complexity; pulses of rain within storms can vary considerably in total rainfall, intensity and duration over the same area. The analysis for south‐east Spain shows that most storms occur over a period of less than 24 h, but that the number of rainfall events declines as the duration exceeds 8 h. This is at odds with data on floods for the study area suggesting that they are produced by storms lasting longer than 18 h. However, one flood event was produced by a very short (15 min) storm with high intensity rainfall. Most floods tended to occur in May/June or September, which coincides with wetter months of the year (September, October, December and May). Floods are also more highly related to the total rainfall occurring in a spell of rain, than to intensity. The complexity of storm rainfall increases with the storm total, which makes it difficult to generalize on the importance of rainfall intensity for flood generation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
The use of precipitation estimates from weather radar reflectivity has become widespread in hydrologic predictions. However, uncertainty remains in the use of the nonlinear reflectivity–rainfall (Z‐R) relation, in particular for mountainous regions where ground validation stations are often lacking, land surface data sets are inaccurate and the spatial variability in many features is high. In this study, we assess the propagation of rainfall errors introduced by different Z‐R relations on distributed hydrologic model performance for four mountain basins in the Colorado Front Range. To do so, we compare spatially integrated and distributed rainfall and runoff metrics at seasonal and event time scales during the warm season when convective storms dominate. Results reveal that the basin simulations are quite sensitive to the uncertainties introduced by the Z‐R relation in terms of streamflow, runoff mechanisms and the water balance components. The propagation of rainfall errors into basin responses follows power law relationships that link streamflow uncertainty to the precipitation errors and streamflow magnitude. Overall, different Z‐R relations preserve the spatial distribution of rainfall relative to a reference case, but not the precipitation magnitude, thus leading to large changes in streamflow amounts and runoff spatial patterns at seasonal and event scales. Furthermore, streamflow errors from the Z‐R relation follow a typical pattern that varies with catchment scale where higher uncertainties exist for intermediate‐sized basins. The relatively high error values introduced by two operational Z‐R relations (WSR‐57 and NEXRAD) in terms of the streamflow response indicate that site‐specific Z‐R relations are desirable in the complex terrain region, particularly in light of other uncertainties in the modelling process, such as model parameter values and initial conditions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
The study focuses on the spatial and temporal variations of intense/extreme rainfall events over Gujarat State (India) during the period 1970–2014. Average monsoon rainfall for the state shows a significant increasing trend, with an increase of 48 mm/decade. Some of the stations in the Saurashtra region show a statistically significant increasing trend but none of the stations in the state show a decreasing trend. The increasing trend in monsoon rainfall is very significant for the past three decades, with an increase of 167 mm/decade. Instead of fixed absolute threshold values, relative threshold values of rainfall corresponding to the 95th, 98th, 99th and 99.5th percentiles for each station have been proposed to represent heavy, very heavy, intense and extreme rainfall, which varied between 70–120, 105–160, 130–210 and 165–280 mm, respectively. Significant increasing trends are observed for the frequency of heavy and very heavy rainfall events over the state.  相似文献   

12.
Despite the importance of mountain ranges as water providers, knowledge of their climate variability is still limited, mostly due to a combination of data scarcity and heterogeneous orography. The tropical Andes share many of the main features of mountain ranges in general, and are subject to several climatic influences that have an effect on rainfall variability. Although studies have addressed the large-scale variation, the basin scale has received little attention. Thus, the purpose of this study was to obtain a better understanding of rainfall variability in the tropical Andes at the basin scal, utilizing the Paute River basin of southern Ecuador as a case study. Analysis of 23 rainfall stations revealed a high spatial variability in terms of: (i) large variations of mean annual precipitation in the range 660–3400 mm; (ii) the presence of a non-monotonic relation between annual precipitation and elevation; and (iii) the existence of four, sometimes contrasting, rainfall regimes. Data from seven stations for the period 1964–1998 was used to study seasonality and trends in annual, seasonal and monthly precipitation. Seasonality is less pronounced at higher elevations, confirming that in the páramo region, the main water source for Andean basins, rainfall is well distributed year round. Additionally, during the period of record, no station has experienced extreme concentrations of annual rainfall during the wet season, which supports the concept of mountains as reliable water providers. Although no regional or basin-wide trends are found for annual precipitation, positive (negative) trends during the wet (dry) season found at four stations raises the likelihood of both water shortages and the risk of precipitation-triggered disasters. The study demonstrates how variable the precipitation patterns of the Andean mountain range are, and illustrates the need for improved monitoring. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
The question as to whether there is a seasonality in the occurrence of local seismic activity in the volcanic island of Tenerife, and if it could be associated to intense rainfall events is addressed. Analogue records from the TFMB seismic station and records on the daily precipitation at the Izaña Meteorological Observatory for the period December 1987–October 1992 were used to check this question. Statistical analyses show a non-random component in the temporal distribution of local microearthquakes at greater than 99% confidence, and a relatively strong contemporaneous correlation with intense rainfall periods. If the suggested correlation is confirmed by further investigations, it will allow better identification and discrimination of local seismic events that could be associated with volcanic activity, and thereby increase the performance of surveillance measures.  相似文献   

14.
One of the costliest natural hazards around the globe is flash floods, resulting from localized intense convective precipitation over short periods of time. Since intense convective rainfall (especially over the continents) is well correlated with lightning activity in these storms, a European Union FP6 FLASH project was realized from 2006 to 2010, focusing on using lightning observations to better understand and predict convective storms that result in flash floods. As part of the project, 23 case studies of flash floods in the Mediterranean region were examined. For the analysis of these storms, lightning data were used together with rainfall estimates in order to understand the storms?? development and electrification processes. In addition, these case studies were simulated using mesoscale meteorological models to better understand the local and synoptic conditions leading to such intense and damaging storms. As part of this project, tools for short-term predictions (nowcasts) of intense convection across the Mediterranean and Europe, and long-term forecasts (a few days) of the likelihood of intense convection, were developed and employed. The project also focused on educational outreach through a special Web site http://flashproject.org supplying real-time lightning observations, real-time experimental nowcasts, medium-range weather forecasts and educational materials. While flash floods and intense thunderstorms cannot be prevented, long-range regional lightning networks can supply valuable data, in real time, for warning the public, end-users and stakeholders of imminent intense rainfall and possible flash floods.  相似文献   

15.
Estimating accurate spatial distribution of precipitation is important for understanding the hydrologic cycle and various hydro‐environmental applications. Satellite‐based precipitation data have been widely used to measure the spatial distribution of precipitation over large extents, but an improvement in accuracy is still needed. In this study, three different merging techniques (Conditional Merging, Geographical Differential Analysis and Geographical Ratio Analysis) were used to merge precipitation estimations from Communication, Ocean and Meteorological Satellite (COMS) Rainfall Intensity data and ground‐based measurements. Merged products were evaluated with varying rain‐gauge network densities and accumulation times. The results confirmed that accuracy of detecting quantitative rainfall was improved as the accumulation time and network density increased. Also, the impact of spatial heterogeneity of precipitation on the merged estimates was investigated. Our merging techniques reproduced accurate spatial distribution of rainfall by adopting the advantages of both gauge and COMS estimates. The efficacy of the merging techniques was particularly pronounced when the spatial heterogeneity of hourly rainfall, quantified by variance of rainfall, was greater than 10 mm2/accumulation time2. Among the techniques analysed, Conditional Merging performed the best, especially when the gauge density was low. This study demonstrates the utility of the COMS Rainfall Intensity product, which has a shorter latency time (1 h) and higher spatio‐temporal resolution (hourly, 4 km by 4 km) than other widely used satellite precipitation products in estimating precipitation using merging techniques with ground‐based point measurements. The outcome has important implications for various hydrologic modelling approaches, especially for producing near real‐time products. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
S. Naoum  I. K. Tsanis 《水文研究》2003,17(10):1899-1922
Annual rainfall records from the island of Crete in Greece were used with the aid of a geographical information system (GIS) to study the temporal and spatial rainfall characteristics. The GIS was used to produce a digital elevation model, delineate watersheds and estimate the areal rainfall from a network of raingauges by using different interpolation schemes. The rainfall–elevation correlation was significant, suggesting an orographic type of precipitation for the island. The rainfall records for the majority of the stations were found to fit the normal distribution. Deviation from normal for the rest of the records was attributed to the wettest year of 1977–1978. The year 1989–1990 was the driest, and most rainfall records showed a decrease in rainfall over 30 years with higher negative rainfall gradients at the higher elevations. Frequency analysis of the rainfall records was used to estimate areal rainfall for the island of Crete and its main watersheds for return periods of 2, 5 and 10 years. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
Great emphasis is being placed on the use of rainfall intensity data at short time intervals to accurately model the dynamics of modern cropping systems, runoff, erosion and pollutant transport. However, rainfall data are often readily available at more aggregated level of time scale and measurements of rainfall intensity at higher resolution are available only at limited stations. A distribution approach is a good compromise between fine-scale (e.g. sub-daily) models and coarse-scale (e.g. daily) rainfall data, because the use of rainfall intensity distribution could substantially improve hydrological models. In the distribution approach, the cumulative distribution function of rainfall intensity is employed to represent the effect of the within-day temporal variability of rainfall and a disaggregation model (i.e. a model disaggregates time series into sets of higher solution) is used to estimate distribution parameters from the daily average effective precipitation. Scaling problems in hydrologic applications often occur at both space and time dimensions and temporal scaling effects on hydrologic responses may exhibit great spatial variability. Transferring disaggregation model parameter values from one station to an arbitrary position is prone to error, thus a satisfactory alternative is to employ spatial interpolation between stations. This study investigates the spatial interpolation of the probability-based disaggregation model. Rainfall intensity observations are represented as a two-parameter lognormal distribution and methods are developed to estimate distribution parameters from either high-resolution rainfall data or coarse-scale precipitation information such as effective intensity rates. Model parameters are spatially interpolated by kriging to obtain the rainfall intensity distribution when only daily totals are available. The method was applied to 56 pluviometer stations in Western Australia. Two goodness-of-fit statistics were used to evaluate the skill—daily and quantile coefficient of efficiency between simulations and observations. Simulations based on cross-validation show that kriging performed better than other two spatial interpolation approaches (B-splines and thin-plate splines).  相似文献   

18.
David Dunkerley 《水文研究》2015,29(15):3294-3305
The metric or ‘observable’ properties of intra‐event rainfall intermittency (IERI) are quantified using a 10‐year record from arid Fowlers Gap, Australia. Rainfall events were delineated using the minimum inter‐event time (MIT) criterion, using eight values in the range of 1 h – 24 h. Within events, no‐rain periods were defined as corresponding to rainfall rates R < 0.1 mm/h or R < 0.2 mm/h (both less than typical wet‐canopy evaporation rates during rainfall). In this way, rainfall events were subdivided into rain and no‐rain periods. Intermittency was characterised using two measures: the fraction of rainless time within an event, and the duration of the longest rainless period. Events identified using a minimum inter‐event time (MIT) of 24 h included on average 9.4 h of contiguous no‐rain time (47.5% of the mean event duration), and only 6.8 h of contiguous rain. Total IERI averaged 51.1% for these events. Events defined with MIT = 6 h (a value commonly adopted in the literature) exhibited a mean of 1.53 h of no‐rain and 9.04 h of contiguous rain. Total IERI averaged 13.9% for these events for R < 0.1 mm/h, but reached 39.2% if no‐rain periods were taken as those of <0.2 mm/h. The maximum contiguous no‐rain period for events defined using MIT = 6 h was 10.9 h from an event of 12.6 h duration, and this represents 86.5% of the event duration. Results demonstrate that smaller, shorter, and less intense rainfall events tend to exhibit higher IERI than larger, longer, and more intense events. IERI is relevant to the understanding of land surface processes. Information on the metric properties of IERI in different rainfall types (convective and stratiform) and rainfall climates (arid, maritime, and wet tropical) may prove to have significance for diverse studies in land surface hydrology. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
20.
Little is known about the spatial and temporal variability of peat erosion nor some of its topographic and weather-related drivers. We present field and laboratory observations of peat erosion using Structure-from-Motion (SfM) photogrammetry. Over a 12 month period, 11 repeated SfM surveys were conducted on four geomorphological sites of 18–28 m2 (peat hagg, gully wall, riparian area and gully head) in a blanket peatland in northern England. A net topographic change of –14 to +30 mm yr–1 for the four sites was observed during the whole monitoring period. Cold conditions in the winter of 2016 resulted in highly variable volume change (net surface topographic rise first and lowering afterwards) via freeze–thaw processes. Long periods of dry conditions in the summer of 2017 led to desiccation and drying and cracking of the peat surface and a corresponding surface lowering. Topographic changes were mainly observed over short-term intervals when intense rainfall, flow wash, needle-ice production or surface desiccation was observed. In the laboratory, we applied rainfall simulations on peat blocks and compared the peat losses quantified by traditional sediment flux measurements with SfM derived topographic data. The magnitude of topographic change determined by SfM (mean value: 0.7 mm, SD: 4.3 mm) was very different to the areal average determined by the sediment yield from the blocks (mean value: –0.1 mm, SD: 0.1 mm). Topographic controls on spatial patterns of topographic change were illustrated from both field and laboratory surveys. Roughness was positively correlated to positive topographic change and was negatively correlated to negative topographic change at field plot scale and laboratory macroscale. Overall, the importance of event-scale change and the direct relationship between surface roughness and the rate of topographic change are important characteristics which we suggest are generalizable to other environments. © 2018 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号