首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Demand for fossil fuels is increasing day by day with the increase in industrialization and energy demand in the world. For this reason, many countries are looking for alternative energy sources against this increasing energy demand. Hydrogen is an alternative fuel with high efficiency and superior properties. The development of hydrogen-powered vehicles in the transport sector is expected to reduce fuel consumption and air pollution from exhaust emissions. In this study, the use of hydrogen as a fuel in vehicles and the current experimental studies in the literature are examined and the results of using hydrogen as an additional fuel are investigated. The effects of hydrogen usage on engine performance and exhaust emissions as an additional fuel to internal combustion gasoline, diesel and LPG engines are explained. Depending on the amount of hydrogen added to the fuel system, the engine power and torque are increased at most on petrol engines, while they are decreased on LPG and diesel engines. In terms of chemical products, the emissions of harmful exhaust gases in gasoline and LPG engines are reduced, while some diesel engines increase nitrogen oxide levels. In addition, it is understood that there will be a positive effect on the environment, due to hydrogen usage in all engine types.  相似文献   

2.
Steam methane reforming (SMR) needs the reaction heat at a temperature above 800 °C provided by the combustion of natural gas and suffers from adverse environmental impact and the hydrogen separated from other chemicals needs extra energy penalty. In order to avoid the expensive cost and high power consumption caused by capturing CO2 after combustion in SMR, natural gas Chemical Looping Reforming (CLR) is proposed, where the chemical looping combustion of metal oxides replaced the direct combustion of NG to convert natural gas to hydrogen and carbon dioxide. Although CO2 can be separated with less energy penalty when combustion, CLR still require higher temperature heat for the hydrogen production and cause the poor sintering of oxygen carriers (OC). Here, we report a high-rate hydrogen production and low-energy penalty of strategy by natural gas chemical-looping process with both metallic oxide reduction and metal oxidation coupled with steam. Fe3O4 is employed as an oxygen carrier. Different from the common chemical looping reforming, the double side reactions of both the reduction and oxidization enable to provide the hydrogen in the range of 500–600 °C under the atmospheric pressure. Furthermore, the CO2 is absorbed and captured with reduction reaction simultaneously.Through the thermodynamic analysis and irreversibility analysis of hydrogen production by natural gas via chemical looping reforming at atmospheric pressure, we provide a possibility of hydrogen production from methane at moderate temperature. The reported results in this paper should be viewed as optimistic due to several idealized assumptions: Considering that the chemical looping reaction is carried out at the equilibrium temperature of 500 °C, and complete CO2 capture can be achieved. It is assumed that the unreacted methane and hydrogen are completely separated by physical adsorption. This paper may have the potential of saving the natural gas consumption required to produce 1 m3 H2 and reducing the cost of hydrogen production.  相似文献   

3.
Steam reforming of natural gas produces the majority of the world's hydrogen (H2) and it is considered as a cost-effective method from a product yield and energy consumption point of view. In this work, we present a simulation and an optimization study of an industrial natural gas steam reforming process by using Aspen HYSYS and MATLAB software. All the parameters were optimized to successfully run a complete process including the hydrogen production zone units (reformer reactor, high temperature gas shift reactor HTS and low temperature gas shift reactor LTS) and the purification zone units (absorber and methanator). Optimum production of hydrogen (87,404 MT/year) was obtained by fixing the temperatures in the reformer and the gas shift reactors (HTS & LTS) at 900 °C, 500 °C and 200 °C respectively while maintaining a pressure of 7 atm, and a steam to carbon ratio (S/C) of 4. Moreover, ~99% of the undesired CO2 and CO gases were removed in the purification zone and a reduction of energy consumption of 77.5% was reached in the heating and cooling units of the process.  相似文献   

4.
Ammonia represents one of the most promising potential solutions as energy vector and hydrogen carrier, having a higher potential to transport energy than hydrogen itself in a pressurized form. Furthermore, solid oxide fuel cells (SOFCs) can directly be fed with ammonia, thus allowing for immediate electrical power and heat generation. This paper deals with the analysis of the dynamic behavior of commercial SOFCs when fueled with ammonia. Several measurements at different temperatures have been performed and performances are compared with hydrogen and a stoichiometrically equivalent mixture of H2 and N2 (3:1 M ratio). Higher temperature led to smaller drops in voltage for both fuels, thus providing higher efficiencies. Ammonia resulted slightly more performant (48% at 760 °C) than hydrogen (45% at 760 °C), in short stack tests. Moreover, different ammonia-to-air ratios have been investigated and the stack area-specific resistance has been studied in detail by comparing numerical modeling predictions and experimental values.  相似文献   

5.
Achieving complete combustion of fossil fuels has long been thought of as a sufficient remedy for tackling vehicular emissions and the ensuing environmental effects. However, thanks to the increasing awareness around the climate change, the global dialogue has now shifted to realizing a carbon-free economy, which has set stricter curbs on the energy source that can power the future mobility. Therefore, the idea of “clean combustion” requires rethinking. Of the many choices for alternative clean fuels that are both energy-efficient and environment-friendly, hydrogen has always been eyed as the best clean alternative there is. This article reviews various available approaches to utilizing hydrogen for mobility applications with a discussion of their relative merits and shortcomings. In addition to well-discussed methods like fuel cell electric vehicles, hydrogen-based IC engines, and dual-fuel operation with hydrogen, this review also assesses the technical and economic feasibilities of using hydrogen in e-fuels and their implications for our existing infrastructure and future energy demands.  相似文献   

6.
In this work a techno economic feasibility study is carried out to implement a Hydrogen based Power to Gas to Power (P2G2P) in a Microgrid, located in a rural area in Baja California, Mexico. The study aims to define the feasibility to store energy throughout seasons with this novel alternative using an electrolyzer to produce green hydrogen from excess renewable energy in winter, to store it during months and re inject it to the grid as electricity by a fuel cell in the high energy demanding season. The Microgrid was modeled in Homer software and simulations of the P2G2P lead to Levelized Cost of Energy data to compare between the P2G2P scenarios and the current diesel-battery based solution to complete the high demand by the community. This study shows that using hydrogen and fuel cells to substitute diesel generators it is possible to reduce CO2 emissions up to a 27% and that in order for the P2G2P to be cost competitive, the fuel cell should reduce its cost in 50%; confirming that, in the medium to long term, the hydrogen storage system is a coherent alternative towards decarbonization of the distributed energy generation.  相似文献   

7.
《能源学会志》2020,93(5):1960-1969
Presently, sugarcane bagasse (SB) and oat hulls (OH) have a distinctive potential as a renewable source of biomass, due to its global availability, which is advantageous for producing liquid and gaseous fuels by thermochemical processes. Thermo-Catalytic Reforming (TCR) is a pyrolysis based technology for generating energy vectors (char, bio-oil and syngas) from biomass wastes. This work aims to study the conversion of SB and OH into fuels, using TCR in a 2 kg/h continuous pilot-scale reactor at different pyrolysis temperatures. The pyrolysis temperatures were studied at 400, 450 and 500 °C, while the subsequent reforming temperature remained constant at 500 °C. The bio-oil contained the highest calorific value of 33.4 and 33.5 MJ/kg for SB and OH, respectively at 500 °C pyrolysis temperature, which represented a notable increase compared to the raw material calorific value of SB and OH (16.4 and 16.0 MJ/kg, respectively), this was the result of deoxygenation reactions occurring. Furthermore, the increment of the pyrolysis temperature improved the water content, total acid number (TAN), viscosity and density of the bio-oil. The syngas and the biochar properties did not change significantly with the increase of the pyrolysis temperature. In order to use TCR bio-oil as an engine fuel, it is necessary to carry out some upgrading treatments; or blend it with fossil fuels if it is to be used as a transportation fuel. Overall, TCR is a promising future route for the valorisation of lignocellulosic residues to produce energy vectors.  相似文献   

8.
The aim of the present study is to demonstrate the production of hydrogen-rich fuel gas from J. curcas residue cake. A comprehensive experimental study for the production of hydrogen rich fuel gas from J. curcas residue cake via downdraft gasification followed by high temperature water gas shift catalytic treatment has been carried out. The gasification experiments are performed at different equivalence ratios and performance of the process is reported in terms of producer gas composition & its calorific value, gas production rate and cold gas efficiency. The producer gas is cleaned of tar and particulate matters by passing it through venturi scrubber followed by sand bed filter. The clean producer gas is then compressed at 0.6 MPa and bottled into a gas cylinder. The bottled producer gas and a simulated mixture of producer gas are then subjected to high temperature shift (HTS) catalytic treatment for hydrogen enriched gas production. The effect of three different operating parameters GHSV, steam to CO ratio and reactor temperature on the product gas composition and CO conversion is reported. From the experimental study it is found that, the presence of oxygen in the bottled producer gas has affected the catalyst activity. Moreover, higher concentration of oxygen concentration in the bottled producer gas leads to the instantaneous deactivation of the HTS catalyst.  相似文献   

9.
Hydrogen has the highest gravimetric energy density of all fuels; however, it has a low volumetric energy density, unfavorable for storage and transportation. Hydrogen is usually liquefied to meet the bulk transportation needs. The exothermic interconversion of its spin isomers is an additional activity to an already energy-intensive process. The most significant temperature drop occurs in the precooling cycle (between ?150 °C and up to ?180 °C) and consumes more than 50% of the required energy. To reduce the energy consumption and improve the exergy efficiency of the hydrogen liquefaction process, a new high-boiling component, Hydrofluoroolefin (HFO-1234yf), is added to the precooled mixed refrigerant. As a result, the specific energy consumption of precooling cycle reduces by 41.8%, from 10.15 kWh/kgLH2 to 5.90 kWh/kgLH2, for the overall process. The exergy efficiency of the proposed case increases by 43.7%; however, the total equipment cost is also the highest. The inflated cost is primarily due to the added ortho-to-para hydrogen conversion reactor, boosting the para-hydrogen concentration. From the perspective of bulk storage and transportation of liquid hydrogen, the simplicity of design and low energy consumption build a convincing case for considering the commercialization of the process.  相似文献   

10.
In the offshore petroleum industry, polymer-containing oily sludge (PCOS) hinders oil extraction and causes tremendous hazards to the marine ecological environment. In this paper, an effective pretreatment method is proposed to break the adhesive structure of PCOS, and the experiments of supercritical water gasification are carried out under the influencing factors including residence time (5–30 min) and temperature (400–750 °C) in batch reactors. The increase of time and temperature all show great promoting effects on gas production. Polycyclic aromatic hydrocarbons, including naphthalene and phenanthrene, are considered as the main obstacles for a complete gasification. Carbon gasification efficiency (CE) reaches maximum of 95.82% at 750 °C, 23 MPa for 30 min, while naphthalene makes up 70% of the organic compounds in residual liquid products. The highest hydrogen yield of 19.79 (mol H2/kg of PCOS) is observed in 750 °C for 25 min. A simplified reaction pathway is presented to describe the gaseous products (H2, CO, CO2, CH4). Two intermediates are defined for describing the reaction process bases on the exhaustive study on organic matters in residual liquid products. The results show that the calculated data and the experimental data have a high degree of fit and tar formation reaction is finished within 10 min.  相似文献   

11.
Road transportation is a significant source of CO2 emissions and energy demand. Consequently, initiatives are being promoted to decrease the sector's emissions and comply with the Paris agreement. This article synthesizes the available information about heavy-duty fuel cell trucks as their deployment needs to be considered a complementary solution to decreasing CO2 emissions alongside battery electric vehicles. A thorough evaluation of 95 relevant documents determines that the main research topics in the past ten years converge on public policies, hydrogen supply chain, environmental impact, drivetrain technology, fuel cell, and storage tank applications. The identified research gaps relate to expanding collaboration between institutions and governments in developing joint green macro policies focused on hydrogen heavy-duty trucks, scarce research about hydrogen production energy sources, low interest in documenting hydrogen pilot projects, and minimal involvement of logistic companies, which need to plan their diesel freight's conversion as soon as possible.  相似文献   

12.
This work presents a fundamental theory and methods for understanding the gas composition dynamics in PEMFC anode fuel supply compartments operated dead-ended with recirculation. The methods are applied to measurement data obtained from a PEMFC system operated with a 1 kW short stack.We show how fuel utilisation and stack efficiency, two key factors determining how well a fuel supply system performs, are coupled through the anode gas composition.The developed methods allow determination of the anode fuel supply molar balance, giving access to the membrane crossover rates and the extent of recirculated gas exchanged to fresh fuel during a purge. A methane tracer gas is also evaluated for estimating fuel impurity enrichment ratios.The above theory and methods may be applied in modelling and experimental research activities related to defining hydrogen fuel quality standards, as well as for developing more efficient and robust PEMFC system operation strategies.  相似文献   

13.
The catalysts used to facilitate the water gas shift reaction (WGSR) are generally harmful to the environment. Therefore, catalysts that have high activity and stability in WGSR and do not pollute the environment need to be fabricated. Herein, three promoters (La, Pr, and Zr) are added into Co–CeO2 (CoCe) catalyst to improve catalytic performance in a high temperature WGSR to produce high-purity hydrogen from waste-derived synthesis gas. Various techniques are employed to confirm the changes in the properties that affect the catalytic performance. The catalytic reaction is performed at a high gas hourly space velocity to screen the performance of the promoted CoCe catalysts. The CoCeZr catalyst shows the highest CO conversion (XCO = 88% at 450 °C) due to its high Co dispersion and oxygen vacancy resulting from the addition of Zr to the CoCe catalyst; thus, it is most suitable for use in high temperature WGSR.  相似文献   

14.
This paper investigates the economics of a fuel cell bus fleet powered by hydrogen produced from electricity generated by a wind park in Austria. The main research question is to simultaneously identify the most economical hydrogen generation business model for the electric utility owning wind power plants and to evaluate the economics of operating a fuel cell bus fleet, with the core objective to minimize the total costs of the overall fuel supply (hydrogen production) and use (bus and operation) system. For that, three possible operation modes of the electrolyzer have been identified and the resulting hydrogen production costs calculated. Furthermore, an in-depth economic analysis of the fuel cell buses as well as the electrolyzer technology has been conducted. Results show that investment costs are the largest cost factor for both technologies. Thus, continuous hydrogen production with the smallest possible electrolyzer is the economically most favorable option. In such an operation mode (power grid), the costs of production per kg/H2 were the lowest. However, this means that the electrolyzer cannot be solely operated with electricity from the wind park, but is also dependent on the electricity mix from the grid. For fuel cell buses, the future cost development will depend very much on the respective policies and funding programs for the market uptake, as to date, the total cost of use for the fuel cell bus is more than two times higher than the diesel bus. The major final conclusion of this paper is that to make fuel cell electric busses competitive in the next years today severe policy interferences, such as subsidies for these busses as well as electrolyzers and bans for fossil energy, along with investments in the setup of a hydrogen infrastructure, are necessary.  相似文献   

15.
Transitioning German road transport partially to hydrogen energy is among the possibilities being discussed to help meet national climate targets. This study investigates impacts of a hypothetical, complete transition from conventionally-fueled to hydrogen-powered German transport through representative scenarios. Our results show that German emissions change between ?179 and +95 MtCO2eq annually, depending on the scenario, with renewable-powered electrolysis leading to the greatest emissions reduction, while electrolysis using the fossil-intense current electricity mix leads to the greatest increase. German energy emissions of regulated pollutants decrease significantly, indicating the potential for simultaneous air quality improvements. Vehicular hydrogen demand is 1000 PJ annually, requiring 446–525 TWh for electrolysis, hydrogen transport and storage, which could be supplied by future German renewable generation, supporting the potential for CO2-free hydrogen traffic and increased energy security. Thus hydrogen-powered transport could contribute significantly to climate and air quality goals, warranting further research and political discussion about this possibility.  相似文献   

16.
This paper includes the experimental test data of an SI engine fuelled with simulated LCV gas (Low Calorific Value), which resembles synthesis gas in composition. The LCV gas was simulated by a mixture of carbon monoxide, hydrogen and nitrogen. During the experiment, the lower heating value of the LCV gas was altered by dilution with nitrogen. A single-cylinder Honda GX270 engine was adopted in the experiment to assess the impact of LCV gas on the system performance. This engine is typically used to power various machines and for electrical energy production in small generator sets. A modified engine was connected to an electric generator, which was loaded with an electric resistor. Engine operation was controlled using a microprocessor controller. All tests were performed at constant engine speed (3000 rpm). The engine was working at wide-open throttle for all mixtures. All mixtures were burned at stoichiometric conditions and with fixed value of ignition timing (30 deg bTDC). The indicated performance of the SI engine was evaluated based on the in-cylinder pressure measurements. No significant impact on the main internal parameters of the tested SI engine fuelled with simulated LCV gas diluted by nitrogen was observed. The experimental tests showed that the combustion duration increased for the mixtures with higher content of inert gas. Increase in the LHV raised the specific emissions of NOx and decreased specific emissions of CO and HC.  相似文献   

17.
Heavy fossil fuels consumption has raised concerns over the energy security and climate change while hydrogen is regarded as the fuel of future to decarbonize global energy use. Hydrogen is commonly used as feedstocks in chemical industries and has a wide range of energy applications such as vehicle fuel, boiler fuel, and energy storage. However, the development of hydrogen energy in Malaysia is sluggish despite the predefined targets in hydrogen roadmap. This paper aims to study the future directions of hydrogen economy in Malaysia considering a variety of hydrogen applications. The potential approaches for hydrogen production, storage, distribution and application in Malaysia have been reviewed and the challenges of hydrogen economy are discussed. A conceptual framework for the accomplishment of hydrogen economy has been proposed where renewable hydrogen could penetrate Malaysia market in three phases. In the first phase, the market should aim to utilize the hydrogen as feedstock for chemical industries. Once the hydrogen production side is matured in the second phase, hydrogen should be used as fuel in internal combustion engines or burners. In the final phase hydrogen should be used as fuel for automobiles (using fuel cell), fuel-cell combined heat and power (CHP) and as energy storage.  相似文献   

18.
《能源学会志》2020,93(5):2044-2054
The paper presents the results of experimental studies of energy (calorific value, ignition delay times and threshold ignition temperatures, duration and temperature of combustion) and environmental (CO2, NOx and SOx emission) characteristics of fuel slurries based on pulverized wood (sawdust), agricultural (straw), and household (cardboard) waste. Wastewater from a sewage treatment plant served as a liquid medium for fuels. Petrochemical waste and heavy oil were additives to slurries. The focus is on obtaining the maximum efficiency ratio of slurry fuel, calculated taking into account environmental, cost, energy and fire safety parameters. All slurry fuels were compared with typical coal-water slurry for all the parameters studied. A comparison was also made between slurries and traditional boiler fuels (coal, fuel oil). The relative efficiency indicator for waste-based mixtures was varied in the range of 0.93–10.92. The lowest ignition costs can be expected when burning a mixture based on straw, cardboard and oil additive (ignition temperature is about 330 °C). The volumes of potential energy generated with the active involvement of industrial waste instead of traditional coal and oil combustion are forecasted. It is predicted that with the widespread use of waste-derived slurries, about 43% of coal and oil can be saved.  相似文献   

19.
《能源学会志》2019,92(4):1167-1177
The scientific novelty of the research is that for the first time differences in the conditions and characteristics of the ignition and burning of droplets of slurries prepared on the basis of coals and waste from their enrichment have been established. The practical significance of the research results is that they illustrate the prospects of utilization of the numerous coal enrichment wastes by combustion in the composition of aqueous slurries with the generation of a rather large amount of energy and a relatively small negative environmental impact. The most significant characteristics were compared: the limiting (minimum) temperature; the ignition delay times; the maximum combustion temperature; the concentration of the main gas anthropogenic emissions. It has been found that fuel mixtures prepared from wet waste of coal flotation are characterized by higher inertia and ignition temperatures compared to slurries with high-quality coal dust. However, the established differences considering the availability and low cost of filter cakes illustrate the prospects of waste derived fuel combustion. The combustion heat of the investigated slurries based on coal and filter cake with addition of petroleum products differs by no more than 5–30%. The average difference between the duration of ignition for fuel droplets based on dust and filter cake of coking and low-caking coals is about 20%. At that the addition of waste turbine oil (10% wt.) into the filter cake reduces the duration of ignition by 12–25% and the ignition temperature – by 10–15 °C without a significant increase in anthropogenic gas emissions. The difference between the minimum ignition temperatures of coal and waste coal based slurries was from 10 °C to 80 °C. On environmental and economic indicators, coal waste is more attractive than coal.  相似文献   

20.
The South Korean government promotes hydrogen-powered vehicles to reduce greenhouse gas (GHG) emissions but these vehicles use gray hydrogen while charging, which causes GHG emissions. Therefore, converting this fuel into green hydrogen is necessary to help reduce GHG emissions, which will incur investment costs of approximately USD 20 billion over a decade. In this study, a contingent valuation method is applied in an analysis to examine the extent to which consumers are willing to pay for green hydrogen charging compared to gray hydrogen charging. The results indicate that the monthly mean of willingness to pay per driver is 51,674 KRW (USD 45.85), equivalent to 4302 KRW per kg (USD 3.82). Additionally, consumers accept a 28.5% increase in the monthly average fuel expenses when converting to green hydrogen. These findings can be used in the development of pricing and energy use plans to finance the expansion of green hydrogen infrastructure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号