首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper sheds the light on the future of green hydrogen in Tunisia. So, a detailed economic assessment and evaluation of the Levelized Hydrogen Cost (LHC) and the Net Profit (NP) of a Photovoltaic (PV) Hydrogen Refueling Station (HRS) are presented and discussed. Tunisia is characterized by its high PV potential which makes the production of electricity from solar energy an effective alternative source. However, due to the regulations and issues related to the connection of medium PV scale to the power grid, the energy produced from renewable sources (RS) is still less than 3% of the total produced electricity. On the other hand, the price of hydrocarbon fuels is still increasing. The gap between production and total demand in hydrocarbons has created a deficit in the primary energy balance. Therefore, the production of hydrogen from solar energy for refueling Fuel Cell Vehicles (FCV)s consists of a promising solution to boost the development of the country, reduce hydrocarbon fuels consumption, and protect the environment. The sizing of a small PV-HRS to produce 150 kg of hydrogen per day shows the necessity to install PV systems with a total Direct Current (DC) capacity of 1.89 MWp. The Initial Cost (IC) analysis shows that while the PV system cost represents 48.5% of the total IC, the IC of electrolysers represents 41%. The storage system cost is approximately equal to 3.2% of the total IC. The LHC is equal to 3.32€/kg with a total IC of 2.34 million €.  相似文献   

2.
Hydrogen energy will play a credible role to reduce gas emissions in the transportation sector, the storage of energy, and other industrial applications. Moreover, the hydrogen produced from renewable energy sources allows to minimize greenhouse gas and increase the net profit of energy projects. This paper discusses the feasibility of the conversion of solar energy into hydrogen in a Photovoltaic Hydrogen Station (PVHS) in the south of Oman. Then, the sizing of different equipment and hydrogen production estimation in a 5 MWp PVHS is presented. The analysis of the investment cost (IC), the Net Profit (NP), and the Levelized Hydrogen Energy Cost (LHEC) are discussed to investigate the benefit of the project. The energy generated from the PV system and the produced hydrogen is calculated through an analytical model. The PVHS consists of 5 MWp PV panels connected to electrolyzers through maximum power point-controlled converters. The electrolyzers convert the electrical energy and the water into hydrogen. The hydrogen compressed and stored in special tanks can be used later in many industrial applications. The system produces about 90 910 kg of hydrogen per year with an IC of 5 301 760 €. The calculated LHEC is equal to 6.2 €/kg at an interest rate of 2%. The analysis has shown promising green hydrogen production projects in Oman.  相似文献   

3.
This paper examines the deviation of refueling a hydrogen fuel cell vehicle with limited opportunity provided by the 68 proposed stations in California. A refueling trip is inserted to reported travel patterns in early hydrogen adoption community clusters and the best and worst case insertions are analyzed. Based on these results, the 68 refueling stations provide an average of 2.5 and 9.6 min deviation for the best and the worst cases. These numbers are comparable to currently observed gasoline station deviation, and we conclude that these stations provide sufficient accessibility to residents in the target areas.  相似文献   

4.
As part of the US Department of Energy Hydrogen, Fuel Cells & Infrastructure Technologies Program, Sandia National Laboratories is developing the technical basis for assessing the safety of hydrogen-based systems for use in the development/modification of relevant codes and standards. This work includes quantitative risk assessments (QRA) of hydrogen facilities. The QRAs are used to identify and quantify scenarios for the unintended release of hydrogen and thus help identify the code requirements that would reduce the risk at hydrogen facilities to acceptable levels.  相似文献   

5.
Clean energy resources will be used more for sustainability improvement and durable development. Efficient technologies of energy production, storage, and usage results in reduction of gas emissions and improvement of the world economy. Despite 30% of electricity being produced from wind energy, the connection of wind farms to medium and large-scale grid power systems is still leading to instability and intermittency problems. Therefore, the conversion of electrical energy generated from wind parks into green hydrogen consists of an exciting solution for advancing the development of green hydrogen production, and the clean transportation sector. This paper presents a techno-economic optimization of hydrogen production for refueling fuel cell vehicles, using wind energy resources. The paper analyses three configurations, standalone Wind-Park Hydrogen Refueling Station (WP-HRS) with backup batteries, WP-HRS with backup fuel cells, and grid-connected WP-HRS. The analysis of different configurations is based on the wind potential at the site, costs of different equipment, and hydrogen load. Therefore, the study aims to find the optimized capacity of wind turbines, electrolyzers, power converters, and storage tanks. The optimization results show that the WP-HRS connected to the grid has the lowest Present Worth Cost (PWC) of 6,500,000 €. Moreover, the Levelized Hydrogen Cost (LHC) of this solution was found to be 6.24 €/kg. This renewable energy system produces 80,000 kg of green hydrogen yearly.  相似文献   

6.
Fuel cell electric vehicles (FCEVs) have now entered the market as zero-emission vehicles. Original equipment manufacturers such as Toyota, Honda, and Hyundai have released commercial cars in parallel with efforts focusing on the development of hydrogen refueling infrastructure to support new FCEV fleets. Persistent challenges for FCEVs include high initial vehicle cost and the availability of hydrogen stations to support FCEV fleets. This study sheds light on the factors that drive manufacturing competitiveness of the principal systems in hydrogen refueling stations, including compressors, storage tanks, precoolers, and dispensers. To explore major cost drivers and investigate possible cost reduction areas, bottom-up manufacturing cost models were developed for these systems. Results from these manufacturing cost models show there is substantial room for cost reductions through economies of scale, as fixed costs can be spread over more units. Results also show that purchasing larger quantities of commodity and purchased parts can drive significant cost reductions. Intuitively, these cost reductions will be reflected in lower hydrogen fuel prices. A simple cost analysis shows there is some room for cost reduction in the manufacturing cost of the hydrogen refueling station systems, which could reach 35% or more when achieving production rates of more than 100 units per year. We estimated the potential cost reduction in hydrogen compression, storage and dispensing as a result of capital cost reduction to reach 5% or more when hydrogen refueling station systems are produced at scale.  相似文献   

7.
As the popularity of fuel cell vehicles continues to rise in the global market, production and supply of low-carbon hydrogen are important to mitigate CO2 emissions. We propose a design for a hydrogen refueling station with a proton exchange membrane electrolyzer (PEM-EL)-based electrolysis system (EL-System) and photovoltaic generation (PV) to supply low-carbon hydrogen. Hydrogen is produced by the EL-System using electricity from PV and the power grid. The system was formulated as a mixed integer linear programming (MILP) model to allow analysis of optimal operational strategies. Case studies with different objective functions, CO2 emission targets, and capacity utilization of the EL-System were evaluated. Efficiency characteristics of the EL-System were obtained through measurements. The optimized operational strategies were evaluated with reference to three evaluation indices: CO2 emissions, capacity utilization, and operational cost of the system. The results were as follows: 1) Regardless of the objective function, the EL-System generally operated in highest efficiency state, and optimal operation depended on the efficiency characteristics of the EL-System; 2) mitigation of CO2 emissions and increase in capacity utilization of the EL-System required trade-offs; and 3) increased capacity utilization of the EL-System showed two opposing effects on hydrogen retail price.  相似文献   

8.
The cost of hydrogen in early fuel cell electric vehicle (FCEV) markets is dominated by the cost of refueling stations, mainly due to the high cost of refueling equipment, small station capacities, lack of economies of scale, and low utilization of the installed refueling capacity. Using the hydrogen delivery scenario analysis model (HDSAM), this study estimates the impacts of these factors on the refueling cost for different refueling technologies and configurations, and quantifies the potential reduction in future hydrogen refueling cost compared to today's cost in the United States. The current hydrogen refueling station levelized cost, for a 200 kg/day dispensing capacity, is in the range of $6–$8/kg H2 when supplied with gaseous hydrogen, and $8–$9/kg H2 for stations supplied with liquid hydrogen. After adding the cost of hydrogen production, packaging, and transportation to the station's levelized cost, the current cost of hydrogen at dispensers for FCEVs in California is in the range of $13–$15/kg H2. The refueling station capacity utilization strongly influences the hydrogen refueling cost. The underutilization of station capacity in early FCEV markets, such as in California, results in a levelized station cost that is approximately 40% higher than it would be in a scenario where the station had been fully utilized since it began operating. In future mature hydrogen FCEV markets, with a large demand for hydrogen, the refueling station's levelized cost can be reduced to $2/kg H2 as a result of improved capacity utilization and reduced equipment cost via learning and economies of scale.  相似文献   

9.
Hydrogen refueling station (HRS) capacity and location depend on the users, which makes it difficult to select the most favorable option before potential users are actually identified. As in Croatia, at least for now, there are no hydrogen users, this study considers a wide range of HRS capacities and their different configurations. These include hydrogen production and charging station within one existing wind farm in Croatia or both nearby the users, the hydrogen production within the wind farm and the charging station nearby the users, while hydrogen is delivered to the station with a tube trailer, and configuration of hydrogen production within the wind farm with a mobile charging station in case of several users in different locations. Each HRS configuration is evaluated by the obtained levelized cost of hydrogen depending on the capital, and operation and maintenance costs within the HRS techno-economic analysis provided.  相似文献   

10.
Hydrogen fuel cell vehicles are currently facing two difficulties in achieving their general use: the lack of hydrogen refueling stations and high hydrogen prices. Hydrogen refueling stations are the middle stage for delivering hydrogen from its sources to consumers, and their location could be affected by the distributed locations of hydrogen sources and consumers. The reasonable siting and sizing of hydrogen refueling stations could both improve the hydrogen infrastructure and reduce regional consumers' cost of using hydrogen. By considering the hydrogen life cycle cost and using a commercial volume forecasting model, this paper creates a relatively thorough and comprehensive model for hydrogen station siting and sizing with the objective of achieving the optimal costs for consumers using hydrogen. The cost‐based model includes the selection of the hydrogen sources, transportation methods, and storage methods, and thus, the hydrogen supply chain can also be optimized. A numerical example is established in Section 4 with the solution algorithm and results.  相似文献   

11.
Hydrogen used in proton exchange membrane-based fuel cell applications is subject to very high quality requirements. While the influences of contaminations in hydrogen on long-term stability have been intensively studied, the purity of hydrogen for mobile applications provided at hydrogen refueling stations (HRS) is rarely analyzed. Hence, in this study, we present sampling of hydrogen at HRS with a specially designed mobile tank for up to 70 MPa. These samples are precisely analyzed with a sophisticated ion molecule reaction mass spectrometer (IMR-MS), able to determine concentrations of contaminants down to the ppb-level. Sampling and analysis of hydrogen at an HRS supplied by electrolysis revealed a high purity, but likewise considerable contaminations above the threshold of the international standard ISO 14687:2019. In this study, a state-of-the-art analysis coupled with a developed methodology for fuel cell electric vehicle-independent sampling of hydrogen with a mobile tank system is demonstrated and applied for comprehensive studies of hydrogen purity.  相似文献   

12.
Worldwide about 550 hydrogen refueling stations (HRS) were in operation in 2021, of which 38% were in Europe. With their number expected to grow even further, the collection and investigation of real-world station operative data are fundamental to tracking their activity in terms of safety issues, performances, maintenance, reliability, and energy use. This paper analyses the parameters that characterize the refueling of 350 bar fuel cell buses (FCB) in five HRS within the 3Emotion project. The HRS are characterized by different refueling capacities, hydrogen supply schemes, storage volumes and pressures, and operational strategies. The FCB operate over various duty cycles circulating on urban and extra-urban routes. From data logs provided by the operators, a dataset of four years of operation has been created. The results show a similar hydrogen amount per fill distribution but quite different refueling times among the stations. The average daily mass per bus and refueling time are around 14.62 kg and 10.28 min. About 50% of the total amount of hydrogen is dispensed overnight, and the refueling events per bus are typically every 24 h. On average, the buses' time spent in service is 10 h per day. The hydrogen consumption is approximately 7 kg/100 km, a rather effective result reached by the technology. The station utilization is below 30% for all sites, the buses availability hardly exceeds 80%.  相似文献   

13.
14.
This paper presents the economic assessment of novel refueling stations, in which through advanced and high efficiency technologies, the polygeneration of more energy services like hydrogen, electricity and heat is carried out on-site.The architecture of these polygeneration plants is realized with a modular structure, organized in more sections.The primary energy source is ammonia that represents an interesting fuel for producing more energy streams. The ammonia feeds directly the SOFC that is able to co-generate simultaneously electricity and hydrogen by coupling a high efficiency energy system with hydrogen chemical storage.Two system configurations have been proposed considering different design concepts: in the first case (Concept_1) the plant is sized for producing 100 kg/day of hydrogen and the power section is sized also for self-sustaining the plant electric power consumption, while in the second one (Concept_2) the plant is sized for producing 100 kg/day of hydrogen and the power section is sized for self-sustaining the plant electric power consumption and for generating 50 kW for the DC fast charging.The economic analysis has been carried out in the current and target scenarios, by evaluating, the levelized cost of hydrogen (LCOH), the levelized cost of electricity (LCOE), the Profitability Index (PI), Internal rate of Return (IRR) and the Discounted Payback Period (DPP).Results have highlighted that the values of the LCOH, for the proposed configurations and economic scenarios, are in the range 6–10 €/kg and the values of the LCOE range from 0.447 €/kWh to 0.242 €/kWh.In terms of PI and IRR, the best performance is achieved in the Concept_1 for the current scenario (1.89 and 8.0%, respectively). On the contrary, in the target scenario, thanks to a drastic costs reduction the co-production of hydrogen and electricity as useful outputs, becomes the best choice from all economic indexes and parameters considered.  相似文献   

15.
The monitoring of hydrogen refueling stations (HRSs) ensures the safety of their operations as well as optimal fueling performance. For a H70-T40 dispenser, a fueling process is required to control the temperature to be below 85 °C; the pressure to be under 70 MPa; and the final state-of-charge (SOC) to be between 95% and 100%. Table-based or MC (total heat capacity) formula-based fueling protocols are traditionally used to achieve such control. In this paper, we propose using a machine learning model to predict the key parameters of fueling processes: the final SOC, the final temperature, and the final pressure in the vehicle tank. To handle outliers and noise in real operation, we adopt a two-stage method. In the first stage, after clustering fueling processes using soft dynamic time warping, a small number of fueling processes are selected from a large amount of historical data. In the second stage, based on initial and current operating conditions, the final SOC, temperature, and pressure of fueling processes are predicted using three models: least absolute shrinkage and selection operator (LASSO), Gaussian process regression (GPR), and robust regression. The experiments on real operational data collected from four hydrogen refueling stations show that the robust regression model achieves better performance than LASSO and GPR for three out of the four stations, and that the robust regression model captures the normal states of regular operation. The computational time of the robust regression model is also scalable for real-time operation. Our study provides a feasible machine learning model for predicting the key fueling parameters, which facilitates the optimization of HRS operation.  相似文献   

16.
Establishing hydrogen refueling stations is key to transition into a hydrogen economy. To achieve this, a near-term, city-level roll-out plan is required, as Japan is shifting from the demonstration to implementation stage of a hydrogen economy. The aim of this study was to devise a plan to identify near-term locations to build hydrogen refueling stations in Yokohama City, Japan. Our plan provides information on the potential location of hydrogen refueling stations for 2020–2030. We considered mobile and parallel-siting type refueling stations; the locations of these stations were determined by matching the supply and demand estimated from hybrid vehicle ownership data and the available space in existing gas stations based on a safety perspective. The results reaffirmed the importance of planning the locations of hydrogen refueling stations and highlighted the suitability of using mobile-type stations. This was based on the uncertainty in fuel demand for fuel cell vehicles during the implementation stage of the hydrogen economy.  相似文献   

17.
The ability to evaluate measurement error at hydrogen refueling stations plays a vital role in the sustainability of the hydrogen vehicle industry. Most previous work in this application investigates the measurement accuracy of mass flow meters in controlled experiments, using testing equipment. The focus of our work is to estimate the measurement accuracy of fueling using data from hydrogen refueling stations collected under real operation. Accuracy is estimated by comparing the observed mass count readings with reference mass counts calculated using the pressure-volume-temperature method. To quantify the measurement uncertainty, we propose using Dirichlet process mixture models, a class of Bayesian non-parametric methods. The Dirichlet process mixture model approach is tested on five hydrogen refueling stations in real operation. Our results show that the model is able to capture the complex structure of the data and successfully estimate the probability distribution of measurement uncertainty. Our work demonstrates the effectiveness of the Bayesian non-parametric approach for evaluating the measurement uncertainty of hydrogen refueling stations.  相似文献   

18.
The issue of electrification of transportation is discussed due to the possibility of depletion of conventional resources in the near future and environmental problems caused by carbon emissions. For this purpose, different options have been proposed for the electrification of electric vehicles (EVs). Each potential EV user can choose a different EV type according to his desire, so different EV types can be seen in the environment. However, one of the most important reasons why the prevalence of EVs has not increased is the scarcity of EV charging, swapping, or refueling stations. In this respect, there is a need for an all-in-one EV station (AiOEVS) that can serve all types of EVs around and that all users know to be able to meet their energy needs easily and in line with their wishes. In this study, the economically optimum energy management model via mixed-integer linear programming (MILP) approach of an AiOEVS including a photovoltaic (PV) system as well electrolyzer and consisting of three different parts (charging for plug-in EVs, swapping for swappable EVs, and refueling for hydrogen fuel-cell EVs (HFCEVs)) is proposed. Besides, energy is purchased from the grid with time-of-use electricity prices. The proposed optimum operating framework is beneficial for each party. Furthermore, the hydrogen tank, swappable batteries, and long-parking plug-in EVs provide operational flexibility. The AiOEVS owner obtains a net profit of 33.12% at the end of the day. Furthermore, when the capacity of the PV is doubled or tripled, the gain increases by 11.69% or 23.41%, respectively.  相似文献   

19.
The rollout of hydrogen fuel cell electric vehicles (FCEVs) requires the initial deployment of an adequate network of hydrogen refueling stations (HRSs). Such deployment has proven to be challenging because of the high initial capital investment, the risk associated with such an investment, and the underutilization of HRSs in early FCEV markets. Because the compression system at an HRS represents about half of the station's initial capital cost, novel concepts that would reduce the cost of compression are needed. Argonne National Laboratory with support from the U.S. Department of Energy's (DOE) Fuel Cell Technologies Office (FCTO) has evaluated the potential for delivering hydrogen in high-pressure tube-trailers as a way of reducing HRS compression and capital costs. This paper describes a consolidation strategy for a high-pressure (250-bar) tube-trailer capable of reducing the compression cost at an HRS by about 60% and the station's initial capital investment by about 40%. The consolidation of tube-trailers at pressures higher than 250 bar (e.g., 500 bar) can offer even greater HRS cost-reduction benefits. For a typical hourly fueling-demand profile and for a given compression capacity, consolidating hydrogen within the pressure vessels of a tube-trailer can triple the station's capacity for fueling FCEVs. The high-pressure tube-trailer consolidation concept could play a major role in enabling the early, widespread deployment of HRSs because it lowers the required HRS capital investment and distributes the investment risk among the market segments of hydrogen production, delivery, and refueling.  相似文献   

20.
Hydrogen refueling infrastructures with on-site production from renewable sources are an interesting solution for assuring green hydrogen with zero CO2 emissions. The main problem of these stations development is the hydrogen cost that depends on both the plant size (hydrogen production capacity) and on the renewable source.In this study, a techno-economic assessment of on-site hydrogen refueling stations (HRS), based on grid-connected PV plants integrated with electrolysis units, has been performed. Different plant configurations, in terms of hydrogen production capacity (50 kg/day, 100 kg/day, 200 kg/day) and the electricity mix (different sharing of electricity supply between the grid and the PV plant), have been analyzed in terms of electric energy demands and costs.The study has been performed by considering the Italian scenario in terms of economic streams (i.e. electricity prices) and solar irradiation conditions.The levelized cost of hydrogen (LCOH), that is the more important indicator among the economic evaluation indexes, has been calculated for all configurations by estimating the investment costs, the operational and maintenance costs and the replacement costs.Results highlighted that the investment costs increase proportionally as the electricity mix changes from Full Grid operation (100% Grid) to Low Grid supply (25% Grid) and as the hydrogen production capacity grows, because of the increasing in the sizes of the PV plant and the HRS units. The operational and maintenance costs are the main contributor to the LCOH due to the annual cost of the electricity purchased from the grid.The calculated LCOH values range from 9.29 €/kg (200 kg/day, 50% Grid) to 12.48 €/kg (50 kg/day, 100% Grid).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号