首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reliable design and safe operation of heavy-duty hydrogen refueling stations are essential for the successful deployment of heavy-duty fuel cell electric vehicles (FCEVs). Fueling heavy-duty FCEVs is different from light-duty vehicles in terms of the dispensed hydrogen quantities and fueling rates, requiring tailored fueling station design for each vehicle class. In particular, the selection and design of the onboard hydrogen storage tank system and the fueling performance requirements influence the safe design of hydrogen fueling stations. A thermodynamic modeling and analysis are performed to evaluate the impact of various fueling parameters and boundary conditions on the fueling performance of heavy-duty FCEVs. We studied the effect of dispenser pressure ramp rate and precooling temperature, initial tank temperature and pressure, ambient temperature, and onboard storage design parameters, such as onboard storage pipe diameter and length, on the fueling rate and final vehicle state-of-charge, while observing prescribed tank pressure and temperature safety limits. An important finding was the sensitivity of the temporal fueling rate profile and the final tank state of charge to the design factors impacting pressure drop between the dispenser and vehicle tank, including onboard storage pipe diameter selection, and flow coefficients of nozzle, valves, and fittings. The fueling rate profile impacts the design and cost of the hydrogen precooling unit upstream of the dispenser.  相似文献   

2.
In the present study, the potential of integrating a Ranque-Hilsch vortex tube (RHVT) in the precooling process for refueling high-pressure hydrogen vehicles in hydrogen refueling stations is investigated. In this regard, two novel precooling processes integrating a vortex tube are proposed to significantly reduce the capital expenditure and operating costs in hydrogen fueling stations. Then a numerical study of the RHVT performance is carried out for a high-pressure hydrogen flow to validate the feasibility of the proposed processes. Obtained results from the numerical simulation show that the energy separation effect also exists in the RHVT with hydrogen flow at the pressure level of tens of megapascals. Moreover, it is found that the energy separation performance of the RHVT improves as the pressure ratio increases. In other words, the temperature drop of the cold exit of RHVT decreases as the pressure ratio decreases in the refueling process, which just matches the slowing-down temperature rise during the cylinder charge. Based on the obtained results, it is concluded that the integration of a RHVT into the precooling process has potential in the hydrogen fueling station.  相似文献   

3.
The future success of fuel cell electric vehicles requires a corresponding infrastructure. In this study, two different refueling station concepts for fuel cell passenger cars with 70 MPa technology were evaluated energetically. In the first option, the input of the refueling station is gaseous hydrogen which is compressed to final pressure, remaining in gaseous state. In the second option, the input is liquid hydrogen which is cryo-compressed directly from the liquid phase to the target pressure. In the first case, the target temperature of −33 °C to −40 °C [1] is achieved by cooling down. In the second option, gaseous deep-cold hydrogen coming from the pump is heated up to target temperature. A dynamic simulation model considering real gas behavior to evaluate both types of fueling stations from an energetic perspective was created. The dynamic model allows the simulation of boil-off losses (liquid stations) and standby energy losses caused by the precooling system (gaseous station) dependent on fueling profiles. The functionality of the model was demonstrated with a sequence of three refueling processes within a short time period (high station utilization). The liquid station consumed 0.37 kWh/kg compared to 2.43 kWh/kg of the gaseous station. Rough estimations indicated that the energy consumption of the entire pathway is higher for liquid hydrogen. The analysis showed the high influence of the high-pressure storage system design on the energy consumption of the station. For future research work the refueling station model can be applied to analyze the energy consumption dependent on factors like utilization, component sizing and ambient temperature.  相似文献   

4.
Hydrogen refueling stations require high capital investment, with compression and storage comprising more than half of the installed cost of refueling equipment. Refueling station configurations and operation strategies can reduce capital investment while improving equipment utilization. Argonne National Laboratory developed a refueling model to evaluate the impact of various refueling compression and storage configurations and tube trailer operating strategies on the cost of hydrogen refueling. The modeling results revealed that a number of strategies can be employed to reduce fueling costs. Proper sizing of the high-pressure buffer storage reduces the compression requirement considerably, thus reducing refueling costs. Employing a tube trailer to initially fill the vehicle's tank also reduces the compression and storage requirements, further reducing refueling costs. Reducing the cut-off pressure of the tube trailer for initial vehicle fills can also significantly reduce the refueling costs. Finally, increasing the trailer's return pressure can cut refueling costs, especially for delivery distances less than 100 km, and in early markets, when refueling stations will be grossly underutilized.  相似文献   

5.
This study explains the fundamental mathematical equations used for the main component models that are implemented in freely available library for hydrogen fueling station. The paper provides a background to the model formulation and theory, useful for the further investigations of hydrogen fueling stations. The model was verified against a specific manufacturer model, and it was validated by using test data from an actual fueling station. The study works as documentation and validation of the model formulation. The simulation library is used to make a model for investigating how the pressure loss in the vehicle affects the fueling process. Keeping the temperature out of the station constant and fueling to 80 MPa in the compressed hydrogen storage system, the pressure loss in the compressed hydrogen storage system directly correlates to the final temperature. The final temperature increases with increasing pressure losses. It is also shown that with no pressure loss in the vehicle the fueling has no limit in fueling speed as the heat of compression depends on the mass filled and the enthalpy of the mass, and not the filling time.  相似文献   

6.
The ability to evaluate measurement error at hydrogen refueling stations plays a vital role in the sustainability of the hydrogen vehicle industry. Most previous work in this application investigates the measurement accuracy of mass flow meters in controlled experiments, using testing equipment. The focus of our work is to estimate the measurement accuracy of fueling using data from hydrogen refueling stations collected under real operation. Accuracy is estimated by comparing the observed mass count readings with reference mass counts calculated using the pressure-volume-temperature method. To quantify the measurement uncertainty, we propose using Dirichlet process mixture models, a class of Bayesian non-parametric methods. The Dirichlet process mixture model approach is tested on five hydrogen refueling stations in real operation. Our results show that the model is able to capture the complex structure of the data and successfully estimate the probability distribution of measurement uncertainty. Our work demonstrates the effectiveness of the Bayesian non-parametric approach for evaluating the measurement uncertainty of hydrogen refueling stations.  相似文献   

7.
Hydrogen fuel cell electric vehicles (HFCEVs) are zero-emission vehicles (ZEVs) that can provide drivers a similar experience to conventional internal combustion engine vehicles (ICEVs), in terms of fueling time and performance (i.e. power and driving range). The Society of Automotive Engineers (SAE) developed fueling protocol J2601 for light-duty HFCEVs to ensure safe vehicle fills while maximizing fueling performance. This study employs a physical model that simulates and compares the fueling performance of two fueling methods, known as the “lookup table” method and the “MC formula” method, within the SAE J2601 protocol. Both the fueling methods provide fast fueling of HFCEVs within minutes, but the MC formula method takes advantage of active measurement of precooling temperature to dynamically control the fueling process, and thereby provides faster vehicle fills. The MC formula method greatly reduces fueling time compared to the lookup table method at higher ambient temperatures, as well as when the precooling temperature falls on the colder side of the expected temperature window for all station types. Although the SAE J2601 lookup table method is the currently implemented standard for refueling hydrogen fuel cell vehicles, the MC formula method provides significant fueling time advantages in certain conditions; these warrant its implementation in future hydrogen refueling stations for better customer satisfaction with fueling experience of HFCEVs.  相似文献   

8.
The final temperature and mass of compressed hydrogen in a tank after a refueling process can be estimated using the analytical solutions of a lumped parameter thermodynamic model of high pressure compressed hydrogen storage system. The effects of three single refueling parameters (ambient temperature, initial pressure and mass flow rate) and three pairs of the refueling parameters on the final hydrogen temperature are studied, for both 35 MPa and 70 MPa tanks. Overall expressions for the final hydrogen temperature, expressed as a function of the three factors, are obtained. The formulae for the final hydrogen temperature provide an excellent representation of the reference data. The effects of the refueling parameters (mass flow rate, initial pressure and inflow temperature) on the final hydrogen mass are determined from the physical model. An overall expression of the final hydrogen mass is also obtained. The final hydrogen temperature can be controlled by reducing the ambient temperature or the mass flow rate, or increasing the initial pressure. The final hydrogen mass can be maximized by reducing the mass flow rate or the inflow temperature, or increasing the initial pressure. This study provides simple engineering formulae to assist in establishing refueling protocols for gaseous hydrogen vehicles.  相似文献   

9.
Development of efficient hydrogen refueling station (HRS) is highly desirable to reduce the hydrogen cost and hence the life cycle expense of fuel cell vehicles (FCVs), which is hindering the large scale application of hydrogen mobility. In this work, we demonstrate the optimization of gaseous HRS process and control method to perform fast and efficient refueling, with reduced energy consumption and increased daily fueling capacity. The HRS was modeled with thermodynamics using a numerical integration method and the accuracy for hydrogen refueling simulation was confirmed by experimental data, showing only 2 °C of temperature rise deviation. The refueling protocols for heavy duty FCVs were first optimized, demonstrating an average fueling rate of 2 kg/min and pre-cooling demand of less than 7 kW for 35 MPa type III tanks. Fast refueling of type IV tanks results in more significant temperature rise, and the required pre-cooling temperature is lowered by 20 K to achieve comparable fueling rate. The station process was also optimized to improve the daily fueling capacity. It is revealed that the hydrogen storage amount is cost-effective to be 25–30% that of the nominal daily refueling capacity, to enhance the refueling performance at peak time and minimize the start and stop cycles of compressor. A novel control method for cascade replenishment was developed by switching among the three banks in the order of decreased pressure, and results show that the daily refueling capacity of HRS is increased by 5%. Therefore, the refueling and station process optimization is effective to promote the efficiency of gaseous HRS.  相似文献   

10.
Recent progress in submerged liquid hydrogen (LH2) cryopump technology development offers improved hydrogen fueling performance at a reduced cost in medium- and heavy-duty (MDV and HDV) fuel cell vehicle refueling applications at 35 MPa pressure, compared to fueling via gas compression. In this paper, we evaluate the fueling cost associated with cryopump-based refueling stations for different MDV and HDV hydrogen demand profiles. We adapt the Heavy Duty Refueling Station Analysis Model (HDRSAM) tool to analyze the submerged cryopump case, and compare the estimated fuel dispensing costs of stations supplied with LH2 for fueling Class 4 delivery van (MDV), public transit bus (HDV), and Class 8 truck (HDV) fleets using cryopumps relative to station designs. A sensitivity analysis around upstream costs illustrates the trade-offs associated with H2 production from onsite electrolysis versus central LH2 production and delivery. Our results indicate that LH2 cryopump-based stations become more economically attractive as the total station capacity (kg dispensed per day) and hourly demand (vehicles per hour) increase. Depending on the use case, savings relative to next best options range from about 5% up to 44% in dispensed costs, with more favorable economics at larger stations with high utilization.  相似文献   

11.
Compressed hydrogen storage is currently widely used in fuel cell vehicles due to its simplicity in tank structure and refueling process. For safety reason, the final gas temperature in the hydrogen tank during vehicle refueling must be maintained under a certain limit, e.g., 85 °C. Many experiments have been performed to find the relations between the final gas temperature in the hydrogen tank and refueling conditions. The analytical solution of the hydrogen temperature in the tank can be obtained from the simplified thermodynamic model of a compressed hydrogen storage tank, and it serves as function formula to fit experimental temperatures. From the analytical solution, the final hydrogen temperature can be expressed as a weighted average form of initial temperature, inflow temperature and ambient temperature inspired by the rule of mixtures. The weighted factors are related to other refueling parameters, such as initial mass, initial pressure, refueling time, refueling mass rate, average pressure ramp rate (APRR), final mass, final pressure, etc. The function formula coming from the analytical solution of the thermodynamic model is more meaningful physically and more efficient mathematically in fitting experimental temperatures. The simple uniform formula, inspired by the concept of the rule of mixture and its weighted factors obtained from the analytical solution of lumped parameter thermodynamics model, is representatively used to fit the experimental and simulated results in publication. Estimation of final hydrogen temperature from refueling parameters based on the rule of mixtures is simple and practical for controlling the maximum temperature and for ensuring hydrogen safety during fast filling process.  相似文献   

12.
Hydrogen fueling stations are emerging around and in larger cities in Europe and United States together with a number of hydrogen vehicles. The most stations comply with the refueling protocol made by society of automotive engineers and they use a cascade fueling system on-site for filling the vehicles. The cascade system at the station has to be refueled as the tank sizes are limited by the high pressures. The process of filling a vehicle and afterward bringing the tanks in refueling station back to same pressures, are called a complete refueling cycle. This study analyzes power consumption of refueling stations as a function of number of tanks, volume of the tanks and the pressure in the tanks. This is done for a complete refueling cycle. It is found that the energy consumption decreases with the number of tanks approaching an exponential function. The compressor accounts for app. 50% of the energy consumption. Going from one tank to three tanks gives an energy saving of app. 30%. Adding more than four tanks the energy saving per extra added tank is less than 4%. The optimal numbers of tanks in the cascade system are three or four.  相似文献   

13.
Reliable hydrogen fueling stations will be required for the successful commercialization of fuel cell vehicles. An evolving hydrogen fueling station has been in operation in Irvine, California since 2003, with nearly five years of operation in its current form. The usage of the station has increased from just 1000 kg dispensed in 2007 to over 8000 kg dispensed in 2011 due to greater numbers of fuel cell vehicles in the area. The station regularly operates beyond its design capacity of 25 kg/day and enables fuel cell vehicles to exceed future carbon reduction goals today. Current limitations include a cost of hydrogen of $15 per kg, net electrical consumption of 5 kWh per kg dispensed, and a need for faster back-to-back vehicle refueling.  相似文献   

14.
The fast refueling of hydrogen results in a temperature rise, which may lead to the failure of the hydrogen storage cylinder. Hence, study of temperature rise during refueling is a significant concern regarding hydrogen safety. In this research, a well-design system for 70 MPa hydrogen refueling was developed. Several refueling experiments on a type III cylinder have been conducted to study the temperature rise during the refueling process on this system. The experimental results show that the gas in caudal region and the aft domes junction surface achieved the maximum temperature rise. A Computational fluid dynamics (CFD) model was also validated by the experimental results. Finally, effects of initial pressure and ambient temperature on temperature rise were studied using this model. The results show that with the increase of initial pressure and the decrease of the ambient temperature, the final gas temperature decreases approximately linearly. This pilot research can provide invaluable guidance in developing advanced refueling standard.  相似文献   

15.
One of the main obstacles of the diffusion of fuel cell electric vehicles (FCEV) is the refueling system. The new stations follow the refueling protocol from the Society of Automotive Engineers where the way to reach the target pressure is not explained. This work analyzes the thermodynamics of a hydrogen fueling station in order to study the effects of the cascade storage system topology on the energy consumption for the cooling facility. It is found that the energy consumption for cooling increases, expanding the total volume of the cascade storage system. Comparing the optimal and the worst volume configurations of the cascade storage tanks at different ambient temperatures, the energy saving is approximately 12% when the average ambient temperature is 20 °C and around 20% when the average ambient temperature is 30 °C. The energy consumption for cooling is significantly influenced by the topology of the cascade storage system and it is particularly relevant in the case of low daily-dispensed amount of hydrogen.  相似文献   

16.
In this study, different hydrogen refueling station (HRS) architectures are analyzed energetically as well as economically for 2015 and 2050. For the energetic evaluation, the model published in Bauer et al. [1] is used and norm-fitting fuelings according to SAE J2601 [2] are applied. This model is extended to include an economic evaluation. The compressor (gaseous hydrogen) resp. pump (liquid hydrogen) throughput and maximum pressures and volumes of the cascaded high-pressure storage system vessels are dimensioned in a way to minimize lifecycle costs, including depreciation, capital commitment and electricity costs. Various station capacity sizes are derived and energy consumption is calculated for different ambient temperatures and different station utilizations. Investment costs and costs per fueling mass are calculated based on different station utilizations and an ambient temperature of +12 °C. In case of gaseous trucked-in hydrogen, a comparison between 5 MPa and 20 MPa low-pressure storage is conducted. For all station configurations and sizes, a medium-voltage grid connection is applied if the power load exceeds a certain limit. For stations with on-site production, the electric power load of the hydrogen production device (electrolyzer or gas reformer) is taken into account in terms of power load. Costs and energy consumption attributed to the production device are not considered in this study due to comparability to other station concepts. Therefore, grid connection costs are allocated to the fueling station part excluding the production device. The operational strategy of the production device is also considered as energy consumption of the subsequent compressor or pump and the required low-pressure storage are affected by it. All station concepts, liquid truck-supplied hydrogen as well as stations with gaseous truck-supplied or on-site produced hydrogen show a considerable cost reduction potential. Long-term specific hydrogen costs of large stations (6 dispensers) are 0.63 €/kg – 0.76 €/kg (dependent on configuration) for stations with gaseous stored hydrogen and 0.18 €/kg for stations with liquid stored hydrogen. The study focuses only on the refueling station and does not allow a statement about the overall cost-effectiveness of different pathways.  相似文献   

17.
Many countries in Europe are investing in fuel cell bus technology with the expected mobilization of more than 1200 buses across Europe in the following years. The scaling-up will make indispensable a more effective design and management of hydrogen refueling stations to improve the refueling phase in terms of refueling time and dispensed quantity while containing the investment and operation costs. In the present study, a previously developed dynamic lumped model of a hydrogen refueling process, developed in MATLAB, is used to analyze tank-to-tank fuel cell buses (30–40 kgH2 at 350 bar) refueling operations comparing a single-tank storage with a multi-tank cascade system. The new-built Aalborg (DK) hydrogen refueling station serves as a case study for the cascade design. In general, a cascading refueling approach from multiple storage tanks at different pressure levels provides the opportunity for a more optimized management of the station storage, reducing the pressure differential between the refueling and refueled tanks throughout the whole refueling process, thus reducing compression energy. This study demonstrates the validity of these aspects for heavy-duty applications through the technical evaluation of the refueling time, gas heating, compression energy consumption and hydrogen utilization, filling the literature gap on cascade versus single tank refueling comparison. Furthermore, a simplified calculation of the capital and operating expenditures is conducted, denoting the cost-effectiveness of the cascade configuration under study. Finally, the effect of different pressure switching points between the storage tanks is investigated, showing that a lower medium pressure usage reduces the compression energy consumption and increases the station flexibility.  相似文献   

18.
An analysis is presented of service rates at nineteen retail hydrogen stations in a heavily-used California network to gain insight into station capacity impacts on customer wait times. Each station has only one fueling position resulting from just one, one-sided dispenser. Collected data of each refueling step for 1000's of hydrogen refuelings in California provides insight into station and network capacity for both California and emerging infrastructure elsewhere. The analysis herein concludes that customers would be exponentially better served with a network of larger, multi-position stations instead of smaller, one position stations.  相似文献   

19.
A comprehensive review of the hydrogen storage systems and investigations performed in search for development of fast refueling technology for fuel cell vehicles are presented. Nowadays, hydrogen is considered as a good and promising energy carrier and can be stored in gaseous, liquid or solid state. Among the three ways, high pressure (such as 35 MPa or 70 MPa) appears to be the most suitable method for transportation due to its technical simplicity, high reliability, high energy efficiency and affordability. However, the refueling of high pressure hydrogen can cause a rapid increase of inner temperature of the storage cylinder, which may result not only in a decrease of the state of charge (SOC) but also in damages to the tank walls and finally to safety problems. In this paper, the theoretical analysis, experiments and simulations on the factors related to the fast refueling, such as initial pressure, initial temperature, filling rate and ambient temperature, are reviewed and analyzed. Understanding the potential relationships between these parameters and the temperature rise may shed a light in developing novel controlling strategies and innovative routes for hydrogen tank fast filling.  相似文献   

20.
Fuel cell vehicles using green hydrogen as fuel can contribute to the mitigation of climate change. The increasing utilization of those vehicles creates the need for cost efficient hydrogen refueling stations. This study investigates how to build the most cost efficient refueling stations to fuel small fleet sizes of 2, 4, 8, 16 and 32 fuel cell busses. A detailed physical model of a hydrogen refueling station was built to determine the necessary hydrogen storage size as well as energy demand for compression and precooling of hydrogen. These results are used to determine the refueling costs for different station configurations that vary the number of storage banks, their volume and compressor capacity.It was found that increasing the number of storage banks will decrease the necessary total station storage volume as well as energy demand for compression and precooling. However, the benefit of adding storage banks decreases with each additional bank. Hence the cost for piping and instrumentation to add banks starts to outweigh the benefits when too many banks are used. Investigating the influence of the compressor mass flow found that when fueling fleets of 2 or 4 busses the lowest cost can be reached by using a compressor with the minimal mass flow necessary to refill all storage banks within 24 h. For fleets of 8, 16 and 32 busses, using the compressor with the maximum investigated mass flow of 54 kg/h leads to the lowest costs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号