首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The aim of this work is to evaluate biohydrogen production from agro-industrial wastewaters and by-products, by combining dark fermentation and microbial electrolysis in a two-step cascade process. Such coupling of both technologies constitutes a technological building block within a concept of environmental biorefinery where sustainable production of renewable energy is expected.Six different wastewaters and industrial by-products coming from cheese, fruit juice, paper, sugar, fruit processing and spirits factories were evaluated for the feasibility of hydrogen production in a two-step process. The overall hydrogen production when coupling dark fermentation and microbial electrolysis was increased up to 13 times when compared to fermentation alone, achieving a maximum overall hydrogen yield of 1608.6 ± 266.2 mLH2/gCODconsumed and a maximum of 78.5 ± 5.7% of COD removal.These results show that dark fermentation coupled with microbial electrolysis is a highly promising option to maximize the conversion of agro-industrial wastewaters and by-products into bio-hydrogen.  相似文献   

2.
Hydrogen energy plays an important role in solving the environmental problems caused by the fuel crisis and greenhouse gas emissions. However, hydrogen application on an industrial scale still requires technological advances, especially in choosing the best technological route for the recovery of renewable and cost-effective hydrogen. Therefore, this bibliometric review evaluated the research progress, trends, updates, and hotspots on hydrogen production from dark fermentation. The Web of Science© database was used to select the documents from 2000 to 2021, and the VOSviewer© and Bibliometrix softwares were used to carry out the bibliometric investigation. The results demonstrated that 3071 documents (2755 articles and 316 reviews) studied the hydrogen production from dark fermentation over the last 21 years. The number of publications exponentially increased in the last five years, which can be associated with the demand for new technologies to produce clean energy sources and decrease the environmental impacts caused by petroleum-based fuel. Keyword analysis revealed that the studies focused on the operational parameters, process optimization, pretreatment, and microbial community, aiming to increase the hydrogen yield during dark fermentation. Finally, this comprehensive review provides future directions for applying dark fermentation to produce hydrogen as a sustainable and renewable fuel in a biorefiney concept.  相似文献   

3.
Fermentative hydrogen production - An alternative clean energy source   总被引:1,自引:0,他引:1  
Hydrogen generation from wastewater is one of the promising approaches through biological route. So, exploitation of wastewater as substrate for hydrogen production with concurrent wastewater treatment is an attractive and effective way of tapping clean energy from renewable resources in a sustainable approach. In this direction, considerable interest is observed on various biological routes of hydrogen production using bio-photolysis, photo fermentation and heterotrophic dark fermentation process or by a combination of these processes. Therefore, in this communication, utilizing industrial wastewater as primary substrate for dark fermentation process is reviewed and different parametric aspects associated with this sustainable approach for better energy production is discussed. The industrial wastewaters that could be the source for bio hydrogen generation, such as rice slurry wastewater, food and domestic wastewaters, citric acid wastewater and paper mill wastewater, are also discussed in this article.  相似文献   

4.
Biohydrogen production from cellulosic waste materials using dark fermentation is a promising technology for producing renewable energy. The purpose of this study was to evaluate residual cellulosic materials generated from local sources for their H2 production potential without any pretreatment. Clostridium thermocellum ATCC 27405, a cellulolytic, thermophilic bacterium that has been shown to be capable of H2 production on both cellobiose and α-cellulose substrates, was used in simultaneous batch fermentation experiments with dried distillers grain (DDGs), barley hulls (BH) and fusarium head blight contaminated barley hulls (CBH) as the carbon source. Overall, the dried distillers grain produced the highest concentration of hydrogen gas at 1.27 mmol H2/glucose equivalent utilized. CBH and BH produced 1.18 and 1.24 mmol H2/glucose equivalent utilized, respectively. Overall, this study indicates that hydrogen derived from a variety of cellulosic waste biomass sources is a possible candidate for the development of sustainable energy.  相似文献   

5.
The transformation from a fossil fuels economy to a low carbon economy reshapes how energy is transmitted. Since most renewable energy is harvested in the form of electricity, hydrogen obtained from water electrolysis using green electricity is considered a promising energy vector. However, the storage and transportation of hydrogen at large scales pose challenges to the existing energy infrastructures, both regarding technological and economic aspects. To facilitate the distribution of renewable energy, a set of candidate hydrogen transportation infrastructures using methanol and ammonia as hydrogen carriers were proposed. A systematical analysis reveals that the levelized costs of transporting hydrogen using methanol and ammonia in the best cases are $1879/t-H2 and $1479/t-H2, respectively. The levelized cost of energy transportation using proposed infrastructures in the best case is $10.09/GJ. A benchmark for hydrogen transportation infrastructure design is provided in this study.  相似文献   

6.
Hydrogen (H2) is often considered as the best option to store energy coming from renewable sources. Hydrogen production from lignocellulosic biomass via fermentation offers low cost and environmental friendly method in terms of energy balance and provides a sustainable pathway for utilization of huge amount of unused biomass. In this regard, special attention on potential of different lignocellulosic biomass is required. In this paper, the fermentative hydrogen production from three carbohydrates-rich biomass: water hyacinth, wheat straw and rice straw is comprehensively reviewed. In other point of view, usage of H2 has a 10% growth annually that will reach to 8–10% of total energy in 2025. Furthermore, research on recent trends of fermentative hydrogen production is crucial and vital. However, the majority of the published researches in the last decade confirmed that some challenges exists which are the process optimization, effecting parameters and commercialization aspects.  相似文献   

7.
Evolving technology and a reoccurring energy crisis creates a continued investigation into the search for sustainable and clean-burning renewable fuels. One possibility is hydrogen that has many desirable qualities such as a low flammability limit promoting ultra-lean combustion, high laminar flame speed for increased thermal efficiency and low emissions. However, past research discovered certain limiting factors in its use such as pre-ignition in spark ignition engines and inability to work as a singular fuel in compression ignition engines. To offset these issues, this work documents manifold injection of a hydrogen/carbon monoxide mixture in a dual-fuel methodology with biodiesel. While carbon monoxide does degrade some of the desirable properties of hydrogen, it acts partially like a diluent to restrict pre-ignition. The result of this mixture addition allows the engine to maintain power while reducing biodiesel fuel consumption with a minimal NOx emissions increase.  相似文献   

8.
The dark fermentation process promises a sustainable route for biohydrogen production. But the low substrate conversion efficiency hinders its commercial feasibility. The present study aims towards simultaneous hydrogen and butanol production to enhance the net energy recovery. Process parameters optimization revealed that pH of 6.5, temperature of 37 °C and inoculum size of 7% (v/v) were suitable for obtaining maximum hydrogen and butanol yields by C. saccharoperbutylacetonicum. Starch and xylan were observed to be preferred carbon sources suggesting effective utilization of C5 and C6 sugars. The maximum hydrogen yield of 264.3 mL g−1 starch and 216 mL g−1 xylan and butanol yield of 0.27 g g−1 starch and 0.24 g g−1 xylan were obtained with overall energy recovery of 85.61% (starch) and 75.22% (xylan), respectively. The present research work indicates the potency of bi-phasic fermentation to boost energy recovery from starch/xylan based feedstock.  相似文献   

9.
The current energy supply depends on fossil fuels which have increased carbon dioxide emissions leading to global warming and depleted non-renewable fossil fuels resources. Hydrogen (H2) fuel could be an eco-friendly alternative since H2 consumption only produces water. However, the overall impacts of the H2 economy depend on feedstock types, production technologies, and process routes. The existing process technologies for H2 production used fossil fuels encounter the escalation of fossil fuel prices and long-term sustainability challenges. Therefore, biohydrogen production from renewable resources like biomass wastes and wastewaters has become the focal development of a sustainable global energy supply. Different from other biohydrogen production studies, this paper emphasizes biohydrogen fermentation processes using different renewable sources and microorganisms. Moreover, it gives an overview of the latest advancing research in different biohydrogen process designs, modeling, and optimization. It also presents the biohydrogen production routes and kinetic modeling for biohydrogenation.  相似文献   

10.
Biohydrogen production via dark fermentation using fermentable sugars from biomass materials is a sustainable way of procuring biohydrogen. Lignocellulosic biomass is a potential renewable feedstock for dark fermentation, but its use is challenged by the recalcitrant nature and generation of certain fermentation inhibitors resulting in compromised fermentation performance. Consolidated bioprocessing (CBP), the successful integration of hydrolysis and fermentation of lignocellulosic biomass to desirable products, has received tremendous research attentions in recent years to boost renewable fuel production in an economically feasible way. A microbial strain capable of both biomass hydrolysis and hydrogen fermentation is critical for successful CBP-based hydrogen fermentation. This review provides comprehensive information on dark fermentation for hydrogen production using lignocellulosic biomass as a potential feedstock with a CBP approach. Consolidated bioprocessing of lignocellulosic biomass for biohydrogen production via native and recombinant microbial strains is discussed in detail. Potential bottlenecks in the above mentioned processes are critically analyzed and future research perspectives are presented.  相似文献   

11.
The purpose of this study is to assess the political, economic and environmental impacts of producing hydrogen from biomass. Hydrogen is a promising renewable fuel for transportation and domestic applications. Hydrogen is a secondary form of energy that has to be manufactured like electricity. The promise of hydrogen as an energy carrier that can provide pollution-free, carbon-free power and fuels for buildings, industry, and transport makes it a potentially critical player in our energy future. Currently, most hydrogen is derived from non-renewable resources by steam reforming in which fossil fuels, primarily natural gas, but could in principle be generated from renewable resources such as biomass by gasification. Hydrogen production from fossil fuels is not renewable and produces at least the same amount of CO2 as the direct combustion of the fossil fuel. The production of hydrogen from biomass has several advantages compared to that of fossil fuels. The major problem in utilization of hydrogen gas as a fuel is its unavailability in nature and the need for inexpensive production methods. Hydrogen production using steam reforming methane is the most economical method among the current commercial processes. These processes use non-renewable energy sources to produce hydrogen and are not sustainable. It is believed that in the future biomass can become an important sustainable source of hydrogen. Several studies have shown that the cost of producing hydrogen from biomass is strongly dependent on the cost of the feedstock. Biomass, in particular, could be a low-cost option for some countries. Therefore, a cost-effective energy-production process could be achieved in which agricultural wastes and various other biomasses are recycled to produce hydrogen economically. Policy interest in moving towards a hydrogen-based economy is rising, largely because converting hydrogen into useable energy can be more efficient than fossil fuels and has the virtue of only producing water as the by-product of the process. Achieving large-scale changes to develop a sustained hydrogen economy requires a large amount of planning and cooperation at national and international alike levels.  相似文献   

12.
Hydrogen has a considerable potential for becoming a major factor in speeding the transition of our carbon-based global energy economy ultimately to a clean, renewable and sustainable economy. The development of hydrogen production, transportation-storage and utilization technologies can play a central role in addressing growing concerns over carbon emissions and climate change, as well as the future availability and security of energy supply. However the widespread use of hydrogen may have unknown environmental effect due to increased anthropogenic emissions of molecular hydrogen and other gases to the atmosphere, through production, transportation-storage and utilization processes. It is recognized that hydrogen participates in stratospheric chemical cycles of H2O and various greenhouse gases, and a substantial increase in its concentration might lead to changes in equilibrium concentration of constituent components of the stratosphere. More accurate modeling of the stratospheric processes as well as better understanding of several other factors such as hydrogen uptake in soil and its effect on microbial communities is required to assess potential adverse effects of hydrogen economy. It is critical for us to understand the potential adverse effect of widespread use of hydrogen and take necessary actions to understand and prevent its possible environmental impacts.  相似文献   

13.
The development of biofuels and the question of finding renewable energy sources are important issues nowadays, due to the increasing shortage of other supplies. Hydrogen has gained very much attention as biofuel, as it is highly energetic and a clean energy source. A very interesting method to produce hydrogen is dark fermentation. It generates a clean energy from organic wastes with low value and at low energy requirements. The production of hydrogen and bio-hydrogen from waste and wastewaters can have a positive environmental impact in terms of creation of highly effective energy fuel and reduction of waste. Due to their nutrients, organic waste and wastewaters are suitable substrates to obtain bio-hydrogen. In this paper we investigate the behaviour and the stability of porous scaffolds containing iron oxide particles in a dark fermentation environment and explore the possibility of hosting mixed cultures of clostridia on them, aiming to an increase in hydrogen production. We address the effect of embedding hematite particles (in different concentrations) in the scaffolds, to see whether there is an increase in bio-hydrogen-production. This latter can be enhanced, if particles of various metal oxides are present, as they can increase bacterial growth and encourage the bioactivity of species that produce hydrogen. The scaffolds analysed consist of polydimethylsiloxane (PDMS) containing Fe2O3 particles and were produced via the sugar template method. X-ray diffraction patterns, SEM images as well as dark fermentation tests in batch procedure are presented and discussed. Bacteria colonies could be detected after long treatment in municipal wastewater and production of biohydrogen was ascertained for all samples investigated.  相似文献   

14.
Municipal solid waste has been used for bio-methane production for many years. However, both methane and carbon dioxide that is produced during bio-methanization increases the greenhouse gas emissions; therefore, hydrogen production can be one of the alternatives for energy production from waste. Hydrogen production from the organic substance was studied in this study with the waste activated sludge from the municipal wastewater treatment. High rated activated sludge (HRAS) process was applied for the treatment to reduce energy consumption and enhance the organic composition of WAS. The highest COD removal (76%) occurred with the 12 g/L organic fraction of municipal solid waste (OFMSW) addition at a retention time of 120 min. The maximum hydrogen and methane yields for the WAS was 18.9 mL/g VS and 410 mL/g VS respectively. Total carbon emission per g VS of the substrate (OFMSW + waste activated sludge) was found as 0.087 mmol CO2 and 28.16 mmol CO2 for dark fermentation and bio-methanization respectively. These kinds of treatment technologies required for the wastewater treatment plantcompensate it some of the energy needs in a renewable source. In this way, the HRAS process decreases the energy requirement of wastewater treatment plant, and carbon-rich waste sludge enables green energy production via lower carbon emissions.  相似文献   

15.
The imminent use of hydrogen as an energy vector establishes the need for sustainable production technologies based on renewable resources. Starch is an abundant renewable resource suitable for bio-hydrogen generation. It was hypothesised that starch hydrolysates from a large (250 mL) hydrothermal reactor could support bioH2 fermentation without inhibition by toxic byproducts.  相似文献   

16.
The present study is focused on bio hydrogen (H2) and bioplastic (i.e., poly-β-hydroxybutyrate; PHB) productions utilizing various wastes under dark fermentation, photo fermentation and subsequent dark-photo fermentation. Potential bio H2 and PHB producing microbes were enriched and isolated. The effects of substrate (rice husk hydrolysate, rice straw hydrolysate, dairy industry wastewater, and rice mill wastewater) concentration (10–100%) and pH (5.5–8.0) were examined in the batch mode under the dark and photo fermentation conditions. Using 100% rice straw hydrolysate at pH 7, the maximum bio H2 (1.53 ± 0.04 mol H2/mol glucose) and PHB (9.8 ± 0.14 g/L) were produced under dark fermentation condition by Bacillus cereus. In the subsequent dark-photo fermentation, the highest amounts of bio H2 and PHB were recorded utilizing 100% rice straw hydrolysate (1.82 ± 0.01 mol H2/mol glucose and 19.15 ± 0.25 g/L PHB) at a pH of 7.0 using Bacillus cereus (KR809374) and Rhodopseudomonas rutila. The subsequent dark-photo fermentative bio H2 and PHB productions obtained using renewable biomass (i.e., rice husk hydrolysate and rice straw hydrolysate) can be considered with respect to the sustainable management of global energy sources and environmental issues.  相似文献   

17.
Demands for the decline of CO2 emissions resulted in a significant transformation of the energy systems working on carbon sources towards more sustainable, clean, and renewable characteristics. Hydrogen is emerging as a secondary energy vector with ever-increasing importance in the decarbonisation progress. Indeed, hydrogen, a green and renewable energy source, could be produced from steam gasification of plant-originated lignocellulosic biomass. In this current review, key factors affect the hydrogen production yield from steam gasification of plant-originated lignocellulosic biomass, including the design of the gasifier, temperature, pressure, and steam-to-biomass ratio, steam flow rate, moisture and particle size of fed biomass, and catalysts were thoroughly analysed. Moreover, the effects of the abovementioned factors on the reduction of tar formation, which is also a key parameter towards ensuring the trouble-free operation of the reactor, were critically evaluated. More importantly, the separation of produced hydrogen from steam gasification of biomass and challenges over technological, environmental, and economic aspects of biomass gasification were also presented in detail. In addition, this paper is also profiling the prospect of Vietnam in fulfilling its hydrogen economy potential because Vietnam has vast biomass due to its tropical weather and availability of arable land, providing abundant lignocellulosic biomass with 45% of agricultural waste, 30% of firewood, and 25% of other sources. Besides, some primary factors hindering the broad application of biomass for hydrogen production were indicated. Finally, some solutions for implementing the hydrogenization strategy in Vietnam have also been discussed.  相似文献   

18.
A process aimed at producing energy needs to produce more energy than the energy necessary to run the process itself in order to be energetically sustainable. In this paper, an energy balance of a batch anaerobic bioreactor has been defined and calculated, both for different operative conditions and for different reactor scales, in order to analyze the sustainability of hydrogen production through dark anaerobic fermentation. Energy production in the form of hydrogen and methane, energy to warm up the fermentation broth, energy loss during fermentation and energy for mixing and pumping have been considered in the energy balance. Experimental data and literature data for mesophilic microorganism consortia have been used to calculate the energy balance. The energy production of a mesophilic microorganism consortium in a batch reactor has been studied in the 16–50 °C temperature range. The hydrogen batch dark fermentation resulted to only have a positive net production of energy over a minimal reactor dimension in summer conditions with an energy recovery strategy. The best working temperature resulted to be 20 °C with 20% of available energy. Hydrogen batch dark fermentation may be coupled with other processes to obtain a positive net energy by recovering energy from the end products of hydrogen dark fermentation. As an example, methane fermentation has been considered to energetically valorize the end products of hydrogen fermentation. The combined process resulted in a positive net energy over the whole range of tested reactor dimension with 45–90% of available energy.  相似文献   

19.
Biogas is obtained by fermentation of biomass, it is a renewable fuel and practically CO2 neutral, offers a significant advantage compared to other fuels for its low carbon/hydrogen ratio (1 atom of carbon and 4 hydrogen atoms). Thus, the level of CO2 emissions from biogas is lower than that of the other fuels. Biogas is a biodegradable and renewable fuel; its benefits are conjugated especially in a flameless combustion process that significantly reduces fuel consumption and polluting emissions. In this paper, we study the effects of the dilution of a mixture of the biogas BG75 (75% CH4 and 25% CO2) – hydrogen by a volume of water vapor ranging from 10% to 50%. The configuration of an opposed jet flame is used with a constant strain rate of 120 s?1. The chemical kinetics is described by the Gri3.0 mechanism. It has been found that the combustion structure is very sensitive to the various parameters.  相似文献   

20.
Biohydrogen production via dark fermentation has shown immense potential for simultaneous energy generation and waste remediation. However, the low substrate conversion rates limit its practical feasibility. Therefore, the present work attempts to develop a single chamber microbial electrolysis cell (MEC) as an additional means for biohydrogen production. Different organic substrates including simple sugars and volatile fatty acids were demonstrated as potential substrates for H2 production in MEC. The use of water hyacinth as sole substrate for H2 production was examined. Furthermore, the feasibility of using MEC for second stage energy recovery after dark fermentation was explored. The two-stage process exhibited improved performance as compared to single stage MEC process with overall hydrogen yield of 67.69 L H2/kg CODconsumed, COD removal of 70.33% and energy recovery of 46%. These results suggest that coupled dark fermentation-MEC process can be a promising means for obtaining high yield biohydrogen from water hyacinth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号