首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cerium oxide supported 5-Amino-2,4-dichlorophenol-3,5-ditertbutylsalisylaldimine-Nickel complex for the first time was used to produce H2 from hydrolysis of sodium borohydride. Cerium oxide supported Nickel complex catalyzed hydrolysis system was studied depend on temperature, concentration of sodium hydroxide, amount of Cerium oxide supported Ni complex catalyst, concentration of Ni complex and concentration of sodium borohydride. Cerium oxide supported Ni(II) complex display highly effective catalytic activity in sodium borohydride hydrolysis reaction. The obtained Cerium oxide supported Ni(II) complex catalyst was characterized by using Fourier Transform Infrared Spectroscopy, Scanning Electron Microscope, Transmission Electron Microscope, Brunauer-Emmett-Teller Surface Area Analysis, X-Ray Diffraction Analysis techniques. The catalyst stability was tested, even the fifth recycle the catalytic activity was maintained at 100%. Additionally the proposed Cerium oxide supported-Ni (II) complex catalyzed sodium borohydride hydrolysis mechanism was determined carefully. The experimental results showed that Cerium oxide supported Ni (II) complex catalyst accelerate sodium borohydride hydrolysis with 43,392 and 19,630 mL H2 gcat?1 min?1 hydrogen production rates at 50 °C and 30 °C respectively and 20,587 kJ mol?1 activation energy.  相似文献   

2.
The present study focused on the increasing of hydrogen evolution through hydrolysis of potassium borohydride in the presence of Ruthenium complex catalyst. It is the first time to use the Ru-Imine complex catalyst in KBH4 hydrolysis reaction to hydrogen evolution. The new Ru complex was synthesized from the tetradentate Imine ligand namely 4,4′-methylenebis (2,6-diethyl)aniline-3,5-di-tert-butylsalisylaldimine and Ru salt under the inert atmosphere. Ru-Imine complex was fully characterized by Elemental Analysis, Infrared Spectroscopy, Scanning Electron Microscope, X-Ray Diffraction Analysis, Brunauer-Emmett-Teller Surface Area Analysis and Transmission Electron Microscopy. By the synthesized Ru-Imine complex catalyst, the potassium borohydride hydrolysis reaction resulted in a lower energy barrier with 20,826 kJ/mol activation energy (Ea) for nth order kinetic model and 18,045 kJ/mol for Langmuir-Hinshelwood (L-H) kinetic model. According to the results Ru-complex was highly active and stable catalyst in KBH4 hydrolysis reaction to hydrogen evolution with 45,466 mL H2/gcat.min and 76,815 mL H2/gcat.min hydrogen generation rates at 30 °C and 50 °C respectively. Moreover Ru-Imine complex catalyst displayed 100% stability even at fifth recycle.  相似文献   

3.
In present paper, the preparation and catalytic activity of Eupergit C polymer (EC) modified Co complex was reported. Scanning Electron Microscope (SEM), X-Ray Diffraction (XRD), Brunauer-Emmett-Teller Surface Area Analysis (BET), Fourier Transform Infrared Spectroscopy (FT-IR), Transmission Electron Microscopy (TEM) coupled with energy dispersive X-ray (EDX) and X-ray photoelectron spectroscopy (XPS) were used to characterization of catalyst. EC modified-Co complex was the first time examined as a catalyst in NaBH4 hydrolysis to H2 evolution. The kinetic calculations were determined by using two different kinetic methods. The low activation energy barriers were achieved as 21.673 kJ mol?1 for nth order model and as 21.061kJmol?1 for Langmuir-Hinshelwood (L-H) model at low temperatures. EC modified-Co complex catalyst exhibited high performance with H2 evolution rates of 3914 mL H2gcat?1min?1 and 9183 mLH2gcat?1min?1 at 30 °C–50 °C. Additionally, Langmuir–Hinshelwood mechanism was explained for EC modified Co complex catalyzed sodium borohydride hydrolysis reaction. The reusability experiments showed that EC modified-Co complex catalyst maintained excellent stability with 100% conversion and without significant lost after the 6th run.  相似文献   

4.
Cyclic life of catalyst for hydrolysis of sodium borohydride is one of the key issues, which hinder commercialization of hydrogen generation from sodium borohydride (NaBH4) solution. This paper is aimed at promoting the cyclic life of Ru/Ni foam catalysts by employing an electro-deposition method. The effect of hydrolysis parameters on hydrolysis of sodium borohydride was studied for improving the catalytic performance. It is found that the hydrogen generation rate (HGR) of the hydrolysis reaction catalyzed by Ru/Ni foam catalyst can reach as high as 23.03 L min?1 g?1 (Ru). The Ru/Ni foam catalyst shows good catalytic activity after a cycleability test of 100 cycles by rinsing with HCl, which is considered as more effective method than rinsing with water for recovering the performance of Ru/Ni foam catalyst.  相似文献   

5.
This study presents 4,4′-methylenebis(2,6-diethyl)aniline-3,5-ditertbutylsalisilaldimine-Zn complex synthesis and its using as a catalyst in sodium borohydride hydrolysis to H2 generation. Surface morphology and structural properties of Zn-complex were investigated with XRD, FTIR, SEM, and BET analysis. The effects of different substrate concentration, effects of solution temperature, and effects of catalyst amount were studied for the hydrogen generation rate. Additionally kinetic parameters were studied. The activation energy was 22.978 kJ/mol and H2 generation rates were calculated as 952.5 mmol H2/gcat.min and 614.4 mmol H2/gcat.min at 50 °C and 30 °C respectively for sodium borohydride hydrolysis reaction.  相似文献   

6.
At present, a novel and active catalyst, RuW/MWCNT catalyst, was successfully synthesized to complete the hydrolysis reaction of sodium borohydride (NaBH4). The activity of Ru catalyst was increased by adding tungsten (W) to ruthenium (Ru) on multi-walled carbon nanotube (MWCNT) support. Surface characterization of the catalyst was performed with scanning electron microscope (SEM-EDX), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmissing electron microscope (TEM) analysis methods. SEM-EDX revealed that RuW (95:5) catalyst metal ratio was obtained at desired nominal ratio. XRD characterization revealed that W addittion to the Ru structure increased its activity by forming an alloy. W addition Ru altered the electronic structure of the Ru. Parameters affecting the hydrolysis performance of RuW/MWCNT catalyst such as temperature, amount of catalyst, NaBH4 concentration and sodium hydroxide (NaOH) concentration were investigated. Adding NaOH to the reaction vessel reduced the activity of the RuW/MWCNT catalyst. From the hydrolysis measurements, the activation energy of RuW(95–5)/MWCNT catalyst was found to be 16.327 kjmol?1, the reaction order as 0.61 and the initial rate as 95,841,4 mL H2gcatmin?1. The stability of the RuW/MWCNT catalyst was tested using 5 times and it was observed that this novel RuW/MWCNT catalyst could complete the hydrolysis reaction despite repeated use.  相似文献   

7.
Influence of using as catalysis, Ni-Schiff Base complex which we previously synthesized [1] used to support with amberzyme oxirane resin (A.O.R.) polymer for increasing the catalytic activity in NaBH4 hydrolysis reaction, to hydrogen generation was studied. The prepared catalyst was characterized by using SEM, XRD, BET, FT-IR analyze technique. Polymer supported Ni-Schiff Base complex catalyzed NaBH4 hydrolysis reaction was investigated depending on concentration of NaBH4, concentration of NaOH, temperature, percentage of Ni complex in total polymer supported Ni-Schiff Base complex and amount of catalyst factors. The maximum hydrogen production rate from hydrolysis of sodium borohydride with nickel-based complex catalyst compared to the pure nickel catalyst is increased from 772 mL H2·g?1 cat.·min?1 to 2240 mL H2 g?1 cat.·min?1 [1], and with supported amberzyme oxirane resin polymer this nickel based complex catalyst was increased to 13000 mL H2·g?1 cat.·min?1 at 30 °C. The activation energy of complex catalyzed NaBH4 hydrolysis reaction was found as 25.377 kJ/mol. This work also includes kinetic information for the hydrolysis of NaBH4.  相似文献   

8.
Sodium borohydride has been widely regarded as a promising hydrogen carrier owing to its greatly hydrogen storing capability (10.8 wt%), high weight density and excellent stability in alkaline solutions. Herein, we first design and synthesize a series of bimetallic M-Ru/C nanocomposites (including Fe–Ru/C, Co–Ru/C, Ni–Ru/C and Cu–Ru/C), via simply alloying of commercial Ru/C with nonprecious metal, for superior H2 evolution from the NaBH4 hydrolysis. The result exhibits that H2 generation is synergetically improved by alloying Ru/C with Co or Ni, while it is hindered by alloying Ru/C with Fe or Cu. Indeed, Co–Ru/C presents the highest efficient catalytic activity for H2 generation, with the TOF of 117.69 mol(H2)·molRu?1·min?1, whereas Ru/C is only 57.08 mol(H2)·molRu?1·min?1. In addition, the TOF of Co–Ru/C reaches to 436.51 mol(H2)·molRu?1·min?1 (96.7 L(H2)·gRu?1·min?1) in the presence of NaOH.  相似文献   

9.
In this study, 5-amino-2, 4-dichlorophenol-3, 5-ditertbutylsalisylaldimine-Ni complex catalyst is synthesised and used as an alternative to previous studies to produce hydrogen from hydrolysis of sodium borohydride. The resulting complex catalyst is characterised by XRD, XPS, SEM, FT-IR and BET surface area analyses. Experimental works are carried out at 30 °C with 2% NaBH4, 7% NaOH and 5 mg of catalyst. The maximum hydrogen production rate from hydrolysis of sodium borohydride with nickel-based complex catalyst compared to the pure nickel catalyst is increased from 772 ml min?1g?1 to 2240 ml min?1g?1 by an increase of 190%. At the same time, the hydrolysis reaction with pure nickel catalyst is completed in 145 min while the hydrolysis reaction with nickel-based complex catalyst is completed in 50 min. The activation energy of this hydrolysis reaction was calculated as 18.16 kJ mol?1. This work also includes kinetic information for the hydrolysis of NaBH4.The reusability of the nickel-based complex catalyst used in this study has also been studied. The nickel-based complex catalyst is maintained the activity of 72% after the sixth use, compared to the first catalytic use.  相似文献   

10.
In this study, the metallurgic sludge which contained oil and was obtained as waste of grinding, sharpening and milling parts was used in the production of hydrogen (H2) from sodium borohydride (NaBH4). The hydrolysis of NaBH4 with the metallurgic sludge catalyst was investigated depending on several parameters such as sodium hydroxide (NaOH) concentration, catalyst amount, NaBH4 concentration and temperature. The obtained metallurgic sludge catalyst was characterized by the XRD, FT-IR and SEM techniques and was evaluated for its activity in the H2 generation from NaBH4 hydrolysis. The maximum H2 production rate from the hydrolysis of NaBH4 with the metallurgic sludge catalyst was calculated as 9366 ml min−1.gcat−1. The value of activation energy was found as 48.05 kJ mol−1.  相似文献   

11.
Achieving high catalytic performance with the lowest possible amount of noble metal is critical for any catalytic applications. Herein, we report a controllable method of preparing low Ru loaded, N-doped porous carbon embedded with cobalt oxide species (Ru/CoOx@NPC) using core-shell metal-organic framework (MOF) as a template. The optimized catalyst exhibits a highly powerful yet stable performance of H2 production through sodium borohydride (NaBH4) hydrolysis. The Ru/CoOx@NPC catalyst shows a fast H2 generation rate (8019.5 mL min?1 gcat?1), high turnover frequency (1118.6 mol min?1 molRu?1), and reusability. The carbonized ZIF-8 core and the ZIF-67 outer shell supplies a porous carbon moiety that not only improves the conductivity and but also provides uniform distribution of the active sites. The XPS analysis indicates that there is a strong electronic interaction between Co species and Ru species. The superior catalytic performance can be attributable to the large specific surface area as well as the synergy between Co-oxide and Ru clusters.  相似文献   

12.
The sodium borohydride, NaBH4, hydrolysis mechanism is studied via the H2O/D2O kinetic isotope effect (KIE). This reaction is of importance as NaBH4 is considered as a hydrogen storage material. Nowadays, hydrogen is thought to be one of the most promising and efficient clean energy carriers. In order to control the rate of the hydrogen evolution reaction (HER), one has to understand the mechanism of its production. The H2O/D2O KIE of the reactions of NaBH4 and NaBD4 with water was studied in solutions containing a ratio of H2O/D2O = 1.00. The separation factor, α, of both reactions is α = 5.0 ± 1.0. The rate of the hydrolysis of BD4? in H2O is faster than that of BH4?. The results point out that the rate-determining step in all hydrolysis stages is the H–OH bond scission.  相似文献   

13.
Sodium borohydride exhibits great potential in the field of chemical hydrogen storage. A competent catalyst would accelerate its practical application for hydrogen utilization by enhance the efficiency of hydrogen generation from hydrolysis of sodium borohydride. Herein, a kind of highly efficient and durable synergistic Co–Ni bimetal inlaid carbon sphere catalyst (Co-NiΦC) was prepared by a co-pyrolysis method, of which the configuration of metal inlaid carbon sphere could effectively expose and anchor the active component by contrast with the capsule catalyst (Co–Ni@C) and supported catalyst (Co–Ni/C). Further, diverse cobalt-nickel contents of the Co-NiΦC catalysts were optimized to achieve the best hydrolysis performance of sodium borohydride. The structure-performance relationship of inlaid catalyst and the bimetallic synergistic mechanism were investigated by multiple characterization measurements and the density functional theory (DFT). As demonstrated, the inlaid Co-NiΦC-2 catalyst (Co/Ni molar ratio of 8/2) shows a promising catalytic activity of hydrogen generation rate up to 6364 mLH2·min?1·gmetal?1, a relative low reaction activation energy of 30.3 kJ/mol as well as robust durability where it still remains about 83.4% of its initial reaction rate after the fifth cycle. The outstanding performance of the optimized catalyst may ascribe to the high dispersion, remarkable Co–Ni synergy and high stabilization of the Co–Ni nanoparticles under the confinement effect of the inlaid metal-carbon sphere configuration. This work provides an alternative avenue for the application of efficient carbon-supported bimetal catalysts in the future.  相似文献   

14.
In this study, the nickel boron (Ni–B) catalyst was studied in the microwave environment for hydrogen production from the hydrolysis of a sodium borohydride solution to release H2. The catalytic activity of the Ni–B catalyst was measured by hydrogen production from the hydrolysis of sodium borohydride. The catalytic properties of the Ni–B catalyst in the microwave medium were examined by considering parameters such as NaOH concentration, NaBH4 concentration, catalyst amount, temperature, and microwave power. Thus, the results obtained from the experiments carried out with Ni–B catalyst both in non-microwave and microwave media were compared. In the experiments, under microwave irradiation, the best result was the release of hydrogen gas from the Ni–B catalyst by applying 100 W of microwave energy at 40 °C. Activation energy values were calculated using the reaction rate constants obtained at different temperatures in the nth order kinetic model and the Langmuir - Hinshelwood model.  相似文献   

15.
A study was undertaken in order to investigate the potential of hydrogen (H2) generation by hydrolysis of sodium borohydride solution (10 wt% NaBH4 and 7 wt% NaOH), in batch reactors, operating at moderate pressures (up to ∼1.2 MPa), in the presence of a powdered nickel-ruthenium based catalyst, reused between 311 and 316 times, to feed on-demand a proton exchange membrane fuel cell. A different approach to the testing of the performance of the batch NaBH4 hydrolysis system is explored, by the quick opening of the reactor release gas valve, to satisfy a sudden H2 demand; and hydrogen generation rates (HGR) are evaluated by changing catalyst amount, operating pressure and successive refueling. The results have shown the tendency of the studied system to maintain constant the H2 generation rates, before and after one swift interruption, for single fuel injections (for 2.1 wt% of reused Ni–Ru based catalyst, a maximum value of HGR of 0.61 L(H2)min−1 g−1(catalyst) at 0.4 MPa, or based on the active metal ruthenium, of 47.5 L(H2)min−1 g−1(Ru), was achieved). This trend was different in the experiments with successive refueling. The present paper go forward in testing the potential of NaBH4 system over reused Ni–Ru catalyst after supplying a sudden demand of H2. Bearing in mind the market of low-power H2-PEMFCs for portable devices, the herein results are original and useful from an application point of view.  相似文献   

16.
This work presents the study of the catalytic activity of aluminum oxide supported Co-Schiff Base complex derived from 4,4′-Methylenebis(2,6-diethylaniline)-3,5-ditertbutylsalicylaldimine-Co-Schiff Base complex in sodium borohydride hydrolysis. This catalyst is characterized with XRD, FT-IR, SEM, TEM, and BET. The respective reaction kinetics have been calculated. With the catalyst condition, maximum reaction (initial) rate is 106540 and 147193,3 mL H2/gcat..min. at 30 °C and 50 °C. For this reaction apparent activation energy is 44,7792 kJ.mol−1 with 20–50 °C. The reaction order value (n) for this catalytic system is 0,31. Additionally when Al2O3 supported Co-Schiff Base complex compared with pure Co-Schiff Base complex, the experimental results show that the aluminum oxide support exhibits enhancing effect with 106540 and 64147 mL H2/gcat. min respectively in sodium borohydride hydrolysis to Hydrogen production.  相似文献   

17.
Molecular hydrogen (H2) is one of the future energy carriers when replacing fossil sources. Enzymatic systems serve as an inspiration for the design of novel hydrogen evolving catalysts. Though several heterobimetallic Ru systems are known as catalysts for the hydrogen evolution reaction (HER), homogeneous mononuclear Ru systems have not been explored much. Here, a new mononuclear Ru(II) complex [cis-RuCl2(PPh3)2(κ2-TL)] (TL = 2-thiophenyl benzimidazole) possessing distorted octahedral geometry, has been synthesised and characterized as an efficient catalyst for acid-assisted hydrogen evolution by using various spectroscopic techniques as well as quantum chemical calculations. When trifluoroacetic acid is used as the proton source, the complex shows remarkable catalytic activity towards H2 production. Based on the DFT calculations, an EECC mechanism could be proposed for HER, consistent with the assignment of the observed redox transitions.  相似文献   

18.
It is the first study to synthesize Co(II)-Schiff Base complex and to use it like a catalyst for potassium borohydride hydrolysis reaction to hydrogen production. Co(II)-complex is synthesized with CoCl2·6H2O and 5-Amino-2,4-dichlorophenol-3,5-di-tert-butylsalisylaldimine ligand. KBH4 hydrolysis reaction is studied according as percentage of KBH4, percentage of KOH, amount of Co-Schiff Base complex catalyst and temperature effects. Co-Schiff Base complex is highly effective catalyst and initial rates (Ro) of KBH4 hydrolysis reaction were 61220.00 and 99746.67 mL H2. g−1 cat. min−1 at 30 °C and 50 °C. Furthermore this study includes the kinetic calculations and for this reaction calculated activation energy is 17.56 kJ mol−1.  相似文献   

19.
The graphene-like transition metal carbide (Ti3C2X2(X = OH, F)) which was synthesized from etching the layered Ti3AlC2 material was applied as a carrier for depositing Ru nanoparticles (Ru/Ti3C2X2). The as-prepared nanocomposites were characterized by SEM, TEM, XRD, XPS and FTIR. During the hydrolysis process, Ru nanoparticles were uniformly generated on the surface of the carrier and acted as catalysts for the hydrogen generation from hydrolysis of NaBH4 at room temperature. It was found that the catalyst Ru/Ti3C2X2 exhibited excellent catalytic activity toward the hydrolysis of sodium borohydride with a hydrogen generation rate of 59.04 L H2/gRu•min and an activation energy of 22.1 kJ/mol.  相似文献   

20.
The fast release of hydrogen from borohydride is highly desired for a fuel cell system. However, the generation of hydrogen from borohydride is limited by the low activity and low stability of the catalyst. Herein, a highly active catalyst is synthesized through a simple one-step chemical reduction using bacterial cellulose (BC) derived carbon as a support for the active Co–B alloy. The morphology and microstructure of the BC/Co–B nanocomposite are characterized by SEM, TEM, XRD, and BET adsorption analysis. The BC/Co–B possesses high surface area (125.31 m2 g?1) high stability and excellent catalytic activity for the hydrolysis of NaBH4. Compared with unsupported Co–B nanocomposite or commercial carbon supported Co–B, the BC/Co–B nanocomposite shows greatly improved catalytic activity for the hydrolysis of NaBH4 with a high hydrogen generation rate of 3887.1 mL min?1 g?1 at 30 °C. An activation energy of 56.37 kJ mol?1 was achieved for the hydrolysis reaction. Furthermore, the BC/Co–B demonstrated excellent stability. These results indicate that the BC/Co–B nanocomposite is a promising candidate for the hydrolysis of borohydrides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号